Asymptotic Problems for Stochastic Processes & PDE's

随机过程的渐近问题

基本信息

  • 批准号:
    9504177
  • 负责人:
  • 金额:
    $ 20.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1995
  • 资助国家:
    美国
  • 起止时间:
    1995-06-01 至 2000-01-31
  • 项目状态:
    已结题

项目摘要

9504177 Freidlin Abstract We study random perturbations of dynamical systems with conservation laws. The evolution of the first integral leads to a diffusion process on a graph corresponding to the first integral. This allows progress in a number of PDE problems with a small parameter. The two-dimensional Navier-Stocks equation with a large Reynolds number, for exampke, belongs to this class of problems. We study also large deviations for the diffusion-transmutation processes. These results help to describe the asymptotic behavior of wave fronts and other patterns in reaction-diffusion equations. Mathematical models of real processes sometimes,turn out to be too complicated for analysis. But very often some of the parameters included in the model are small (or large) in comparison with the others. This allows us to simplify the model and often to obtain the solution in a form convenient for applications. We study small random perturbations of dynamical systems, large scale approximation in reaction- diffusion models and other problems related to an interplay between random and deterministic factors.
摘要研究具有守恒律的动力系统的随机摄动。第一个积分的演化导致了与第一个积分对应的图上的扩散过程。这允许在许多具有小参数的PDE问题中取得进展。例如,具有大雷诺数的二维Navier-Stocks方程就属于这类问题。我们还研究了扩散-嬗变过程的大偏差。这些结果有助于描述反应扩散方程中波前和其他模式的渐近行为。实际过程的数学模型有时会变得过于复杂,难以分析。但是,与其他参数相比,模型中包含的一些参数通常很小(或很大)。这使我们能够简化模型,并经常以方便应用程序的形式获得解决方案。我们研究动力系统的小随机扰动,反应扩散模型的大尺度近似以及其他与随机因素和确定性因素之间相互作用有关的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Freidlin其他文献

Correction to “Random perturbations of dynamical systems and diffusion processes with conservation laws”
  • DOI:
    10.1007/s00440-006-0027-0
  • 发表时间:
    2006-09-27
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Mark Freidlin;Matthias Weber
  • 通讯作者:
    Matthias Weber
Fast flow asymptotics for stochastic incompressible viscous fluids in $$\mathbb {R}^2$$ and SPDEs on graphs
  • DOI:
    10.1007/s00440-018-0839-8
  • 发表时间:
    2018-02-28
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Sandra Cerrai;Mark Freidlin
  • 通讯作者:
    Mark Freidlin
Wave front propagation in semi-linear differential equations and systems of KPP-type
  • DOI:
    10.1007/bf02790366
  • 发表时间:
    1992-12-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Mark Freidlin
  • 通讯作者:
    Mark Freidlin
The Dynkin Festschrift
戴金节庆文集
  • DOI:
    10.1007/978-1-4612-0279-0
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mark Freidlin
  • 通讯作者:
    Mark Freidlin
Autonomous Stochastic Perturbations of Dynamical Systems
  • DOI:
    10.1023/a:1025796307749
  • 发表时间:
    2003-08-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Mark Freidlin
  • 通讯作者:
    Mark Freidlin

Mark Freidlin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Freidlin', 18)}}的其他基金

Long-term Effects of Small Perturbations and Other Multiscale Asymptotic Problems
小扰动和其他多尺度渐近问题的长期影响
  • 批准号:
    1411866
  • 财政年份:
    2014
  • 资助金额:
    $ 20.21万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Stochastics and Dynamics: Asymptotic problems
FRG:协作研究:随机学和动力学:渐近问题
  • 批准号:
    0854982
  • 财政年份:
    2009
  • 资助金额:
    $ 20.21万
  • 项目类别:
    Standard Grant
Asymptotic Problems for Stochastic Processes and Differential Equations
随机过程和微分方程的渐近问题
  • 批准号:
    0803287
  • 财政年份:
    2008
  • 资助金额:
    $ 20.21万
  • 项目类别:
    Continuing Grant
Asymptotic Problems for Stochastic Process and Differential Equations
随机过程和微分方程的渐近问题
  • 批准号:
    0503950
  • 财政年份:
    2005
  • 资助金额:
    $ 20.21万
  • 项目类别:
    Standard Grant
Asymptotic Problems for Stochastic Processes and PDE's
随机过程和偏微分方程的渐近问题
  • 批准号:
    0103589
  • 财政年份:
    2001
  • 资助金额:
    $ 20.21万
  • 项目类别:
    Continuing Grant
Asymptotic Problems for Stochastic Processes and PDE's
随机过程和偏微分方程的渐近问题
  • 批准号:
    9803522
  • 财政年份:
    1998
  • 资助金额:
    $ 20.21万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Asymptotic Problems for Nonlinear PDE's and Limit Theorems for Random Procesess and Fields
数学科学:非线性偏微分方程的渐近问题以及随机过程和域的极限定理
  • 批准号:
    9106562
  • 财政年份:
    1991
  • 资助金额:
    $ 20.21万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Reaction-Diffusion Equations: Asymptotic Problems, Random Perturbations, Probabilistic Approach
数学科学:反应扩散方程:渐近问题、随机扰动、概率方法
  • 批准号:
    8721440
  • 财政年份:
    1988
  • 资助金额:
    $ 20.21万
  • 项目类别:
    Continuing Grant

相似海外基金

Stochastic Analysis and Asymptotic Problems
随机分析和渐近问题
  • 批准号:
    1811181
  • 财政年份:
    2018
  • 资助金额:
    $ 20.21万
  • 项目类别:
    Continuing Grant
Asymptotic problems for stochastic partial differential equations
随机偏微分方程的渐近问题
  • 批准号:
    1407615
  • 财政年份:
    2014
  • 资助金额:
    $ 20.21万
  • 项目类别:
    Continuing Grant
Asymptotic problems for stochastic partial differential equations
随机偏微分方程的渐近问题
  • 批准号:
    0907295
  • 财政年份:
    2009
  • 资助金额:
    $ 20.21万
  • 项目类别:
    Standard Grant
Asymptotic Problems for Stochastic Processes and Differential Equations
随机过程和微分方程的渐近问题
  • 批准号:
    0803287
  • 财政年份:
    2008
  • 资助金额:
    $ 20.21万
  • 项目类别:
    Continuing Grant
Conference on Asymptotic Analysis in Stochastic Processes, Nonparametric Estimation, and Related Problems
随机过程渐近分析、非参数估计及相关问题会议
  • 批准号:
    0600537
  • 财政年份:
    2006
  • 资助金额:
    $ 20.21万
  • 项目类别:
    Standard Grant
Asymptotic Problems for Stochastic Process and Differential Equations
随机过程和微分方程的渐近问题
  • 批准号:
    0503950
  • 财政年份:
    2005
  • 资助金额:
    $ 20.21万
  • 项目类别:
    Standard Grant
Fully Nonlinear Free Boundary Problems, Stochastic Symmetrization, and Asymptotic Symmetry of Parabolic Equations
完全非线性自由边界问题、抛物方程的随机对称性和渐近对称性
  • 批准号:
    0196526
  • 财政年份:
    2001
  • 资助金额:
    $ 20.21万
  • 项目类别:
    Standard Grant
Asymptotic Problems for Stochastic Processes and PDE's
随机过程和偏微分方程的渐近问题
  • 批准号:
    0103589
  • 财政年份:
    2001
  • 资助金额:
    $ 20.21万
  • 项目类别:
    Continuing Grant
Fully Nonlinear Free Boundary Problems, Stochastic Symmetrization, and Asymptotic Symmetry of Parabolic Equations
完全非线性自由边界问题、抛物方程的随机对称性和渐近对称性
  • 批准号:
    0088973
  • 财政年份:
    2000
  • 资助金额:
    $ 20.21万
  • 项目类别:
    Standard Grant
Asymptotic Problems for Stochastic Processes and PDE's
随机过程和偏微分方程的渐近问题
  • 批准号:
    9803522
  • 财政年份:
    1998
  • 资助金额:
    $ 20.21万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了