FRG: Collaborative Research: Stochastics and Dynamics: Asymptotic problems

FRG:协作研究:随机学和动力学:渐近问题

基本信息

  • 批准号:
    0854982
  • 负责人:
  • 金额:
    $ 52.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-06-01 至 2013-09-30
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).Mathematical models taking both deterministic and stochastic factors into account are becoming increasingly important in science and technology. These models, as a rule, are rather complicated. Oftentimes, they include many parameters characterizing the system (diffusion coefficients, rates of chemical reactions, time scales, etc). The parameters often have different scales, so it is natural to consider various asymptotic regimes in these models. We will study deterministic and stochastic perturbations of systems with conservationlaws, in particular, perturbations of Hamiltonian systems with multi-well Hamiltonians. Metastability and stochastic resonance for systems perturbed by noise will be considered. New problems on singular perturbations of elliptic PDE's will be studied as well as quasi-linear parabolic equations which lead to a new class of stochastic perturbations of dynamical systems. Mathematical models of polymers and models leading to anomalous particle transport will be considered. We plan to study a number of asymptotic problems for inifinite-dimensional systems, in particular, for stochastic PDE's.We will develop new methods of asymptotic analysis for stochas-tic processes, dynamical systems and PDE's. New effects related to metastability, singular perturbations of PDE's, particle and wave motion in random media will be described. The research is related to many branches of mathematics and has various applications in physics, biology and engineering. Asymptotic methods can and should play an important role in educating the new generation of researchers. We plan to work with graduate students and postdocs, run seminars and organize conferences on these topics.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。同时考虑确定性和随机性因素的数学模型在科学和技术中变得越来越重要。这些模型通常相当复杂。通常,它们包括许多表征系统的参数(扩散系数,化学反应速率,时间尺度等)。参数通常具有不同的尺度,因此在这些模型中考虑各种渐近状态是很自然的。我们将研究具有守恒律的系统的确定性和随机扰动,特别是具有多阱哈密顿量的哈密顿系统的扰动。将考虑受噪声扰动系统的亚稳性和随机共振。本文将研究椭圆型偏微分方程的奇异摄动问题以及拟线性抛物型方程的奇异摄动问题,从而得到一类新的动力系统的随机摄动。聚合物的数学模型和模型导致异常粒子传输将被考虑。我们计划研究无穷维系统的一些渐近问题,特别是随机偏微分方程的渐近问题。我们将发展随机过程、动力系统和偏微分方程的渐近分析的新方法。新的影响有关的亚稳性,奇异摄动的偏微分方程的,粒子和波动的运动在随机介质中将被描述。该研究涉及数学的许多分支,并在物理学,生物学和工程学中有各种应用。渐近方法可以而且应该在教育新一代研究人员方面发挥重要作用。我们计划与研究生和博士后合作,举办研讨会并组织有关这些主题的会议。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Freidlin其他文献

Correction to “Random perturbations of dynamical systems and diffusion processes with conservation laws”
  • DOI:
    10.1007/s00440-006-0027-0
  • 发表时间:
    2006-09-27
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Mark Freidlin;Matthias Weber
  • 通讯作者:
    Matthias Weber
Fast flow asymptotics for stochastic incompressible viscous fluids in $$\mathbb {R}^2$$ and SPDEs on graphs
  • DOI:
    10.1007/s00440-018-0839-8
  • 发表时间:
    2018-02-28
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Sandra Cerrai;Mark Freidlin
  • 通讯作者:
    Mark Freidlin
Wave front propagation in semi-linear differential equations and systems of KPP-type
  • DOI:
    10.1007/bf02790366
  • 发表时间:
    1992-12-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Mark Freidlin
  • 通讯作者:
    Mark Freidlin
The Dynkin Festschrift
戴金节庆文集
  • DOI:
    10.1007/978-1-4612-0279-0
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mark Freidlin
  • 通讯作者:
    Mark Freidlin
Autonomous Stochastic Perturbations of Dynamical Systems
  • DOI:
    10.1023/a:1025796307749
  • 发表时间:
    2003-08-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Mark Freidlin
  • 通讯作者:
    Mark Freidlin

Mark Freidlin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Freidlin', 18)}}的其他基金

Long-term Effects of Small Perturbations and Other Multiscale Asymptotic Problems
小扰动和其他多尺度渐近问题的长期影响
  • 批准号:
    1411866
  • 财政年份:
    2014
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Standard Grant
Asymptotic Problems for Stochastic Processes and Differential Equations
随机过程和微分方程的渐近问题
  • 批准号:
    0803287
  • 财政年份:
    2008
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Continuing Grant
Asymptotic Problems for Stochastic Process and Differential Equations
随机过程和微分方程的渐近问题
  • 批准号:
    0503950
  • 财政年份:
    2005
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Standard Grant
Asymptotic Problems for Stochastic Processes and PDE's
随机过程和偏微分方程的渐近问题
  • 批准号:
    0103589
  • 财政年份:
    2001
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Continuing Grant
Asymptotic Problems for Stochastic Processes and PDE's
随机过程和偏微分方程的渐近问题
  • 批准号:
    9803522
  • 财政年份:
    1998
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Continuing Grant
Asymptotic Problems for Stochastic Processes & PDE's
随机过程的渐近问题
  • 批准号:
    9504177
  • 财政年份:
    1995
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Asymptotic Problems for Nonlinear PDE's and Limit Theorems for Random Procesess and Fields
数学科学:非线性偏微分方程的渐近问题以及随机过程和域的极限定理
  • 批准号:
    9106562
  • 财政年份:
    1991
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Reaction-Diffusion Equations: Asymptotic Problems, Random Perturbations, Probabilistic Approach
数学科学:反应扩散方程:渐近问题、随机扰动、概率方法
  • 批准号:
    8721440
  • 财政年份:
    1988
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Continuing Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了