Asymptotic Problems for Stochastic Processes and PDE's
随机过程和偏微分方程的渐近问题
基本信息
- 批准号:9803522
- 负责人:
- 金额:$ 8.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-06-15 至 2002-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9803522 Freidlin Perturbations of the Hamiltonian systems will be studied in this project. The long- time behavior of such perturbed systems, even if the perturbations are purely deterministic, should be described by a stochastic process on a graph related to the Hamilton function. A class of asymptotic problems for PDEs, such as the small viscosity asymptotics for the Navier-Stokes equations in the plane or small diffusion asymptotics for reaction - diffusion in an incompressible fluid, are closely related to random perturbations of the Hamiltonian systems. The probabilistic approach is useful in analyzing these problems. Long time behavior of dynamical systems perturbed by a stochastic noise is studied in this project. This type of problem arises in many applications, for example, the long time behavior of cosmic objects or the motion of a fluid with a small viscosity. The perturbations, even if they are small, become essential for the long-time behavior of the system. The asymptotic approach, which the investigator is developing in the project, is the most promising for analyzing this type of problem.
本项目将研究哈密顿系统的9803522个Freidlin微扰。这种扰动系统的长期行为,即使扰动是纯粹的确定性的,也应该用与哈密尔顿函数有关的图上的随机过程来描述。一类偏微分方程解的渐近问题,如平面上Navier-Stokes方程的小粘性渐近问题或不可压缩流体中反应扩散问题的小扩散渐近问题,都与哈密顿系统的随机摄动密切相关。概率方法在分析这些问题时是有用的。本课题研究了受随机噪声干扰的动力系统的长时间行为。这种类型的问题出现在许多应用中,例如,宇宙物体的长时间行为或具有小粘度的流体的运动。这些扰动,即使它们很小,对于系统的长期行为也是必不可少的。研究人员在项目中开发的渐近方法是分析这类问题最有前途的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Freidlin其他文献
Correction to “Random perturbations of dynamical systems and diffusion processes with conservation laws”
- DOI:
10.1007/s00440-006-0027-0 - 发表时间:
2006-09-27 - 期刊:
- 影响因子:1.600
- 作者:
Mark Freidlin;Matthias Weber - 通讯作者:
Matthias Weber
Fast flow asymptotics for stochastic incompressible viscous fluids in $$\mathbb {R}^2$$ and SPDEs on graphs
- DOI:
10.1007/s00440-018-0839-8 - 发表时间:
2018-02-28 - 期刊:
- 影响因子:1.600
- 作者:
Sandra Cerrai;Mark Freidlin - 通讯作者:
Mark Freidlin
Wave front propagation in semi-linear differential equations and systems of KPP-type
- DOI:
10.1007/bf02790366 - 发表时间:
1992-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Mark Freidlin - 通讯作者:
Mark Freidlin
The Dynkin Festschrift
戴金节庆文集
- DOI:
10.1007/978-1-4612-0279-0 - 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
Mark Freidlin - 通讯作者:
Mark Freidlin
Autonomous Stochastic Perturbations of Dynamical Systems
- DOI:
10.1023/a:1025796307749 - 发表时间:
2003-08-01 - 期刊:
- 影响因子:1.000
- 作者:
Mark Freidlin - 通讯作者:
Mark Freidlin
Mark Freidlin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Freidlin', 18)}}的其他基金
Long-term Effects of Small Perturbations and Other Multiscale Asymptotic Problems
小扰动和其他多尺度渐近问题的长期影响
- 批准号:
1411866 - 财政年份:2014
- 资助金额:
$ 8.55万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Stochastics and Dynamics: Asymptotic problems
FRG:协作研究:随机学和动力学:渐近问题
- 批准号:
0854982 - 财政年份:2009
- 资助金额:
$ 8.55万 - 项目类别:
Standard Grant
Asymptotic Problems for Stochastic Processes and Differential Equations
随机过程和微分方程的渐近问题
- 批准号:
0803287 - 财政年份:2008
- 资助金额:
$ 8.55万 - 项目类别:
Continuing Grant
Asymptotic Problems for Stochastic Process and Differential Equations
随机过程和微分方程的渐近问题
- 批准号:
0503950 - 财政年份:2005
- 资助金额:
$ 8.55万 - 项目类别:
Standard Grant
Asymptotic Problems for Stochastic Processes and PDE's
随机过程和偏微分方程的渐近问题
- 批准号:
0103589 - 财政年份:2001
- 资助金额:
$ 8.55万 - 项目类别:
Continuing Grant
Asymptotic Problems for Stochastic Processes & PDE's
随机过程的渐近问题
- 批准号:
9504177 - 财政年份:1995
- 资助金额:
$ 8.55万 - 项目类别:
Continuing Grant
Mathematical Sciences: Asymptotic Problems for Nonlinear PDE's and Limit Theorems for Random Procesess and Fields
数学科学:非线性偏微分方程的渐近问题以及随机过程和域的极限定理
- 批准号:
9106562 - 财政年份:1991
- 资助金额:
$ 8.55万 - 项目类别:
Standard Grant
Mathematical Sciences: Reaction-Diffusion Equations: Asymptotic Problems, Random Perturbations, Probabilistic Approach
数学科学:反应扩散方程:渐近问题、随机扰动、概率方法
- 批准号:
8721440 - 财政年份:1988
- 资助金额:
$ 8.55万 - 项目类别:
Continuing Grant
相似海外基金
Stochastic Analysis and Asymptotic Problems
随机分析和渐近问题
- 批准号:
1811181 - 财政年份:2018
- 资助金额:
$ 8.55万 - 项目类别:
Continuing Grant
Asymptotic problems for stochastic partial differential equations
随机偏微分方程的渐近问题
- 批准号:
1407615 - 财政年份:2014
- 资助金额:
$ 8.55万 - 项目类别:
Continuing Grant
Asymptotic problems for stochastic partial differential equations
随机偏微分方程的渐近问题
- 批准号:
0907295 - 财政年份:2009
- 资助金额:
$ 8.55万 - 项目类别:
Standard Grant
Asymptotic Problems for Stochastic Processes and Differential Equations
随机过程和微分方程的渐近问题
- 批准号:
0803287 - 财政年份:2008
- 资助金额:
$ 8.55万 - 项目类别:
Continuing Grant
Conference on Asymptotic Analysis in Stochastic Processes, Nonparametric Estimation, and Related Problems
随机过程渐近分析、非参数估计及相关问题会议
- 批准号:
0600537 - 财政年份:2006
- 资助金额:
$ 8.55万 - 项目类别:
Standard Grant
Asymptotic Problems for Stochastic Process and Differential Equations
随机过程和微分方程的渐近问题
- 批准号:
0503950 - 财政年份:2005
- 资助金额:
$ 8.55万 - 项目类别:
Standard Grant
Fully Nonlinear Free Boundary Problems, Stochastic Symmetrization, and Asymptotic Symmetry of Parabolic Equations
完全非线性自由边界问题、抛物方程的随机对称性和渐近对称性
- 批准号:
0196526 - 财政年份:2001
- 资助金额:
$ 8.55万 - 项目类别:
Standard Grant
Asymptotic Problems for Stochastic Processes and PDE's
随机过程和偏微分方程的渐近问题
- 批准号:
0103589 - 财政年份:2001
- 资助金额:
$ 8.55万 - 项目类别:
Continuing Grant
Fully Nonlinear Free Boundary Problems, Stochastic Symmetrization, and Asymptotic Symmetry of Parabolic Equations
完全非线性自由边界问题、抛物方程的随机对称性和渐近对称性
- 批准号:
0088973 - 财政年份:2000
- 资助金额:
$ 8.55万 - 项目类别:
Standard Grant
Asymptotic Problems for Stochastic Processes & PDE's
随机过程的渐近问题
- 批准号:
9504177 - 财政年份:1995
- 资助金额:
$ 8.55万 - 项目类别:
Continuing Grant