Long-term Effects of Small Perturbations and Other Multiscale Asymptotic Problems

小扰动和其他多尺度渐近问题的长期影响

基本信息

  • 批准号:
    1411866
  • 负责人:
  • 金额:
    $ 21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-15 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

Long term effects of small perturbations, both deterministic and stochastic are of great interest in real life and for various intellectual enterprises from history, sociology, and economics to biology, physics, and engineering. When one wants to understand the time evolution of a complex system, a simplified model of the system, that can be analyzed, is usually a way forward. In this case one chooses a relatively small number of main 'factors' or variables which are guiding the evolution of the system while neglecting other factors that are relatively insignificant. On a short time interval, these small factors are not essential. However, on long time scales, the factors, which were considered as negligible, can become important and even critical for determining the system's behavior. The investigator and his colleagues are developing new models and methods for studying such problems. 'Problem' examples include climate change, biological evolution, and phase transitions in physical or economic systems as well as the appearance of 'stable' oscillations, equilibriums, and other patterns caused by small perturbations.The investigator and his colleagues study deterministic and stochastic perturbations of various dynamical systems as well as semi-flows corresponding to the evolution of PDEs. A general approach to, at first glance, different problems is suggested. Metastability and stochastic resonance, which are manifestation of the large deviation theory, as well as the averaging principle and its modifications can be considered from this point of view. This general approach is based on the study of limiting slow evolution as a motion on the cone of invariant measures of the non-perturbed system. The approach underlines the importance of joint consideration of deterministic and stochastic perturbations. Perturbations of the generalized Landau-Lifshitz equation for multiple spins, incompressible flows in 3D having a conservation law, reaction-advection-diffusion equations in narrow channels arising in models of molecular motors can be studied using this approach. Various boundary problems for second order elliptic equations with a small parameter can be considered as well. Finally, the PI will also study the small mass asymptotics for the Langevin equation.
在真实的生活中,以及从历史、社会学、经济学到生物学、物理学和工程学的各种智力活动中,小扰动的长期影响,无论是确定性的还是随机的,都引起了极大的兴趣。当人们想要了解一个复杂系统的时间演化时,一个可以分析的简化系统模型通常是一个前进的方向。在这种情况下,人们选择了相对较少的主要“因素”或变量,这些因素或变量引导着系统的演变,而忽略了其他相对不重要的因素。在短时间间隔内,这些小因素并不重要。然而,在长时间尺度上,这些被认为可以忽略不计的因素可能变得重要,甚至是决定系统行为的关键因素。研究人员和他的同事正在开发研究这些问题的新模型和方法。“问题”的例子包括气候变化,生物进化,物理或经济系统的相变,以及由小扰动引起的“稳定”振荡,平衡和其他模式的出现。研究员和他的同事研究各种动力系统的确定性和随机扰动,以及与偏微分方程演化相对应的半流。一个一般的方法,乍一看,不同的问题提出。作为大偏差理论的表现形式的亚稳和随机共振,以及平均原理及其修正,都可以从这个角度来考虑。这个一般的方法是基于研究的限制慢演化作为一个运动的锥不变的措施的非扰动系统。该方法强调了联合考虑确定性和随机扰动的重要性。利用这种方法可以研究多自旋的广义Landau-Lifshitz方程、具有守恒律的三维不可压缩流、分子马达模型中窄通道中的反应-对流-扩散方程的扰动。还可以考虑带有小参数的二阶椭圆方程的各种边界问题。最后,PI还将研究朗之万方程的小质量渐近性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Freidlin其他文献

Correction to “Random perturbations of dynamical systems and diffusion processes with conservation laws”
  • DOI:
    10.1007/s00440-006-0027-0
  • 发表时间:
    2006-09-27
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Mark Freidlin;Matthias Weber
  • 通讯作者:
    Matthias Weber
Fast flow asymptotics for stochastic incompressible viscous fluids in $$\mathbb {R}^2$$ and SPDEs on graphs
  • DOI:
    10.1007/s00440-018-0839-8
  • 发表时间:
    2018-02-28
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Sandra Cerrai;Mark Freidlin
  • 通讯作者:
    Mark Freidlin
Wave front propagation in semi-linear differential equations and systems of KPP-type
  • DOI:
    10.1007/bf02790366
  • 发表时间:
    1992-12-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Mark Freidlin
  • 通讯作者:
    Mark Freidlin
The Dynkin Festschrift
戴金节庆文集
  • DOI:
    10.1007/978-1-4612-0279-0
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mark Freidlin
  • 通讯作者:
    Mark Freidlin
Autonomous Stochastic Perturbations of Dynamical Systems
  • DOI:
    10.1023/a:1025796307749
  • 发表时间:
    2003-08-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Mark Freidlin
  • 通讯作者:
    Mark Freidlin

Mark Freidlin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Freidlin', 18)}}的其他基金

FRG: Collaborative Research: Stochastics and Dynamics: Asymptotic problems
FRG:协作研究:随机学和动力学:渐近问题
  • 批准号:
    0854982
  • 财政年份:
    2009
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Asymptotic Problems for Stochastic Processes and Differential Equations
随机过程和微分方程的渐近问题
  • 批准号:
    0803287
  • 财政年份:
    2008
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Asymptotic Problems for Stochastic Process and Differential Equations
随机过程和微分方程的渐近问题
  • 批准号:
    0503950
  • 财政年份:
    2005
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Asymptotic Problems for Stochastic Processes and PDE's
随机过程和偏微分方程的渐近问题
  • 批准号:
    0103589
  • 财政年份:
    2001
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Asymptotic Problems for Stochastic Processes and PDE's
随机过程和偏微分方程的渐近问题
  • 批准号:
    9803522
  • 财政年份:
    1998
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Asymptotic Problems for Stochastic Processes & PDE's
随机过程的渐近问题
  • 批准号:
    9504177
  • 财政年份:
    1995
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Asymptotic Problems for Nonlinear PDE's and Limit Theorems for Random Procesess and Fields
数学科学:非线性偏微分方程的渐近问题以及随机过程和域的极限定理
  • 批准号:
    9106562
  • 财政年份:
    1991
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Reaction-Diffusion Equations: Asymptotic Problems, Random Perturbations, Probabilistic Approach
数学科学:反应扩散方程:渐近问题、随机扰动、概率方法
  • 批准号:
    8721440
  • 财政年份:
    1988
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant

相似国自然基金

区域碳交易试点的运行机制及其经济影响研究---基于Term-Co2模型
  • 批准号:
    71473242
  • 批准年份:
    2014
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
长期间歇性缺氧抑制呼吸运动神经长时程易化的分子机制
  • 批准号:
    81141002
  • 批准年份:
    2011
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
激活γ-分泌酶促进海马长时程增强形成的机制
  • 批准号:
    30500149
  • 批准年份:
    2005
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Doctoral Dissertation Research: Long Term Environmental Effects of Metallurgy
博士论文研究:冶金的长期环境影响
  • 批准号:
    2420185
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Discovering How Stress Induced Histomorphogenesis Effects the Long-term Leaching from an Implanted Medical Device using Phase Field Models
使用相场模型发现应力诱导的组织形态发生如何影响植入医疗器械的长期浸出
  • 批准号:
    2309538
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
A comprehensive assessment of the long-term effects of COVID-19 on population health in Japan
全面评估 COVID-19 对日本人口健康的长期影响
  • 批准号:
    24K02676
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Metachronous synergistic effects of preoperative viral therapy and postoperative adjuvant immunotherapy via long-term antitumor immunity
术前病毒治疗和术后辅助免疫治疗通过长期抗肿瘤免疫产生异时协同效应
  • 批准号:
    23K08213
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On the Long-Term Health Effects of Natural Disasters and Their Mechanisms
自然灾害对健康的长期影响及其机制
  • 批准号:
    23K01379
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Risk factors and prevention methods for the exacerbation and long-term effects of Yips
Yips加重和长期影响的危险因素和预防方法
  • 批准号:
    23K16762
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Mechanism of the short- and long-term effects of COVID-19-induced Alarmins on hematopoietic stem and progenitor cells.
COVID-19诱导的警报素对造血干细胞和祖细胞的短期和长期影响的机制。
  • 批准号:
    10836902
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
Effects of EITC on Formal Long-Term Care for Older Adults with and without AD/ADRD
EITC 对患有和不患有 AD/ADRD 的老年人正规长期护理的影响
  • 批准号:
    10573493
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
Beyond Cardiotoxicity: Characterizing the Short and Long-term Cardiovascular Side Effects of Breast Cancer Endocrine Treatment
超越心脏毒性:描述乳腺癌内分泌治疗的短期和长期心血管副作用
  • 批准号:
    488204
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Operating Grants
Investigating long-term, post-acute effects of psychedelics on cognitive function: neurobiological and psychological mechanisms
研究迷幻药对认知功能的长期、急性后影响:神经生物学和心理机制
  • 批准号:
    2887826
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了