Asymptotic Problems for Stochastic Processes and PDE's

随机过程和偏微分方程的渐近问题

基本信息

  • 批准号:
    0103589
  • 负责人:
  • 金额:
    $ 9.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-08-01 至 2004-07-31
  • 项目状态:
    已结题

项目摘要

Several classes of asymptotic problems are considered. The averaging principle for deterministic and stochastic perturbations, asymptotic problems for reaction-diffusion equations, and problems related to stochastic resonance are among them. The long-time evolution of perturbed systems with conservation laws, even in the case of purely deterministic perturbations, leads, in general, to stochastic process on complexes defined by the conservation laws. So the classical averaging principle (say, for deterministic perturbations of integrable Hamiltonian systems when the Hamiltonian has many critical points) should be treated in the stochastic framework. In this research small diffusion asymptotics for reaction-diffusion in an incompressible 2D-fluid, which is closely related to the averaging for Hamiltonian systems, is studied. Another class of problems concerns the large deviation theory and stochastic resonance. A number of new effects such as large amplitude oscillations and stabilization induced by the small noise in autonomous systems are considered.The asymptotic approach is one of the most powerful tools of applied mathematics. In particular, the averaging principle plays the leading role when systems combining multi-scale processes are considered. Such problems arise in mechanics, in material sciences, in biophysics, and in other areas. This research does not just consider problems concerning the mathematical justification of the averaging principle, but also describes new applications and new effects. In recent years stochastic-resonance-type effects, which first appeared in the theory of long-time evolution of the climate, have attracted the attention of specialists in many areas of physics, engineering, and biology. The mathematical theory of these effects is
考虑了几类渐近问题。其中包括确定性和随机扰动的平均原理,反应扩散方程的渐近问题,以及与随机共振有关的问题。具有守恒定律的扰动系统的长期演化,即使在纯确定性扰动的情况下,一般也会导致由守恒定律定义的复体上的随机过程。因此,经典的平均原理(例如,当可积哈密顿系统有许多临界点时的确定性扰动)应该在随机框架中处理。本文研究了不可压缩二维流体中反应扩散的小扩散渐近性,它与哈密顿系统的平均密切相关。另一类问题涉及大偏差理论和随机共振。考虑了自治系统中由小噪声引起的大振幅振荡和稳定等新效应。渐近方法是应用数学中最强大的工具之一。当考虑多尺度过程组合的系统时,平均原理起主导作用。这样的问题出现在力学、材料科学、生物物理学和其他领域。本研究不仅考虑了平均原理的数学证明问题,而且描述了新的应用和新的效果。近年来,随机共振型效应首次出现在气候长期演化理论中,引起了物理学、工程学和生物学等诸多领域专家的关注。这些效应的数学理论是

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Freidlin其他文献

Correction to “Random perturbations of dynamical systems and diffusion processes with conservation laws”
  • DOI:
    10.1007/s00440-006-0027-0
  • 发表时间:
    2006-09-27
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Mark Freidlin;Matthias Weber
  • 通讯作者:
    Matthias Weber
Fast flow asymptotics for stochastic incompressible viscous fluids in $$\mathbb {R}^2$$ and SPDEs on graphs
  • DOI:
    10.1007/s00440-018-0839-8
  • 发表时间:
    2018-02-28
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Sandra Cerrai;Mark Freidlin
  • 通讯作者:
    Mark Freidlin
Wave front propagation in semi-linear differential equations and systems of KPP-type
  • DOI:
    10.1007/bf02790366
  • 发表时间:
    1992-12-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Mark Freidlin
  • 通讯作者:
    Mark Freidlin
The Dynkin Festschrift
戴金节庆文集
  • DOI:
    10.1007/978-1-4612-0279-0
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mark Freidlin
  • 通讯作者:
    Mark Freidlin
Autonomous Stochastic Perturbations of Dynamical Systems
  • DOI:
    10.1023/a:1025796307749
  • 发表时间:
    2003-08-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Mark Freidlin
  • 通讯作者:
    Mark Freidlin

Mark Freidlin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Freidlin', 18)}}的其他基金

Long-term Effects of Small Perturbations and Other Multiscale Asymptotic Problems
小扰动和其他多尺度渐近问题的长期影响
  • 批准号:
    1411866
  • 财政年份:
    2014
  • 资助金额:
    $ 9.76万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Stochastics and Dynamics: Asymptotic problems
FRG:协作研究:随机学和动力学:渐近问题
  • 批准号:
    0854982
  • 财政年份:
    2009
  • 资助金额:
    $ 9.76万
  • 项目类别:
    Standard Grant
Asymptotic Problems for Stochastic Processes and Differential Equations
随机过程和微分方程的渐近问题
  • 批准号:
    0803287
  • 财政年份:
    2008
  • 资助金额:
    $ 9.76万
  • 项目类别:
    Continuing Grant
Asymptotic Problems for Stochastic Process and Differential Equations
随机过程和微分方程的渐近问题
  • 批准号:
    0503950
  • 财政年份:
    2005
  • 资助金额:
    $ 9.76万
  • 项目类别:
    Standard Grant
Asymptotic Problems for Stochastic Processes and PDE's
随机过程和偏微分方程的渐近问题
  • 批准号:
    9803522
  • 财政年份:
    1998
  • 资助金额:
    $ 9.76万
  • 项目类别:
    Continuing Grant
Asymptotic Problems for Stochastic Processes & PDE's
随机过程的渐近问题
  • 批准号:
    9504177
  • 财政年份:
    1995
  • 资助金额:
    $ 9.76万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Asymptotic Problems for Nonlinear PDE's and Limit Theorems for Random Procesess and Fields
数学科学:非线性偏微分方程的渐近问题以及随机过程和域的极限定理
  • 批准号:
    9106562
  • 财政年份:
    1991
  • 资助金额:
    $ 9.76万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Reaction-Diffusion Equations: Asymptotic Problems, Random Perturbations, Probabilistic Approach
数学科学:反应扩散方程:渐近问题、随机扰动、概率方法
  • 批准号:
    8721440
  • 财政年份:
    1988
  • 资助金额:
    $ 9.76万
  • 项目类别:
    Continuing Grant

相似海外基金

Stochastic Analysis and Asymptotic Problems
随机分析和渐近问题
  • 批准号:
    1811181
  • 财政年份:
    2018
  • 资助金额:
    $ 9.76万
  • 项目类别:
    Continuing Grant
Asymptotic problems for stochastic partial differential equations
随机偏微分方程的渐近问题
  • 批准号:
    1407615
  • 财政年份:
    2014
  • 资助金额:
    $ 9.76万
  • 项目类别:
    Continuing Grant
Asymptotic problems for stochastic partial differential equations
随机偏微分方程的渐近问题
  • 批准号:
    0907295
  • 财政年份:
    2009
  • 资助金额:
    $ 9.76万
  • 项目类别:
    Standard Grant
Asymptotic Problems for Stochastic Processes and Differential Equations
随机过程和微分方程的渐近问题
  • 批准号:
    0803287
  • 财政年份:
    2008
  • 资助金额:
    $ 9.76万
  • 项目类别:
    Continuing Grant
Conference on Asymptotic Analysis in Stochastic Processes, Nonparametric Estimation, and Related Problems
随机过程渐近分析、非参数估计及相关问题会议
  • 批准号:
    0600537
  • 财政年份:
    2006
  • 资助金额:
    $ 9.76万
  • 项目类别:
    Standard Grant
Asymptotic Problems for Stochastic Process and Differential Equations
随机过程和微分方程的渐近问题
  • 批准号:
    0503950
  • 财政年份:
    2005
  • 资助金额:
    $ 9.76万
  • 项目类别:
    Standard Grant
Fully Nonlinear Free Boundary Problems, Stochastic Symmetrization, and Asymptotic Symmetry of Parabolic Equations
完全非线性自由边界问题、抛物方程的随机对称性和渐近对称性
  • 批准号:
    0196526
  • 财政年份:
    2001
  • 资助金额:
    $ 9.76万
  • 项目类别:
    Standard Grant
Fully Nonlinear Free Boundary Problems, Stochastic Symmetrization, and Asymptotic Symmetry of Parabolic Equations
完全非线性自由边界问题、抛物方程的随机对称性和渐近对称性
  • 批准号:
    0088973
  • 财政年份:
    2000
  • 资助金额:
    $ 9.76万
  • 项目类别:
    Standard Grant
Asymptotic Problems for Stochastic Processes and PDE's
随机过程和偏微分方程的渐近问题
  • 批准号:
    9803522
  • 财政年份:
    1998
  • 资助金额:
    $ 9.76万
  • 项目类别:
    Continuing Grant
Asymptotic Problems for Stochastic Processes & PDE's
随机过程的渐近问题
  • 批准号:
    9504177
  • 财政年份:
    1995
  • 资助金额:
    $ 9.76万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了