Mathematical Sciences: Geometry of Hyperbolic 3-Dimensional Manifolds
数学科学:双曲三维流形的几何
基本信息
- 批准号:9504282
- 负责人:
- 金额:$ 9.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-07-01 至 1999-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9504282 Bonahon Francis Bonahon studies low-dimensional topology and hyperbolic geometry. One of the fundamental tools in these two fields has been the notion of measured geodesic laminations. The space of measured geodesic laminations is a certain completion of the space of simple closed curves on a surface. Bonahon has developed a differential calculus on this space of measured geodesic laminations and is applying his techniques to study 3-dimensional hyperbolic manifolds. For instance, this has enabled him to analyze the degree of differentiability by which the geometry of the convex core of a hyperbolic 3-manifold varies as a function of the hyperbolic metric. He is currently working on the problem of classifying hyperbolic 3-dimensional manifolds up to isometry. Many problems in topology, geometry and mathematical physics involve the consideration of all simple closed curves on a surface. Here, a surface can be something as simple as a plane from which we have removed a finite number of points (to be thought of as obstacles); a simple closed curve is a curve in the plane which avoids the obstacles, ends at the same point where it started, and does not cut itself in between. The problem is to understand when it is possible to deform one such curve into another without crossing the obstacles. This is analogous to considering all possible ways to wrap a string around a certain number of vertical pegs. To study these curves, it is useful to go one step higher in abstraction by considering `generalized curves' which occur as limits of curves. This is a typical process in mathematics, analogous to the one by which, to understand all rational numbers (such as 2/3 or 47/23), one has to consider all real numbers (such as pi or square root of 2). Bonahon is developing a differential calculus on the space of generalized curves, analogous to the classical calculus on the space of real numbers. This enables him to compute derivatives for certain natu ral functions on the space of simple closed curves and to obtain estimates on their variations. ***
9504282 Bonahon Francis Bonahon研究低维拓扑和双曲几何。这两个领域的基本工具之一是测量测地线分层的概念。测地线分层空间是曲面上简单闭曲线空间的一定完备性。Bonahon在这个测量的测地线分层空间上发展了一种微积分,并正在应用他的技术来研究三维双曲流形。例如,这使他能够分析双曲三维流形的凸核的几何作为双曲度规的函数而变化的可微性程度。他目前正在研究将双曲三维流形分类到等距的问题。拓扑学、几何学和数学物理中的许多问题都涉及到曲面上所有简单的闭合曲线的考虑。在这里,曲面可以是一个简单的东西,就像我们从其中移除了有限数量的点(被认为是障碍物)的平面;简单的闭合曲线是平面上的一条曲线,它避开障碍物,在起点的同一点结束,并且不会在两者之间割断自己。问题是理解什么时候可以在不跨越障碍的情况下将一条这样的曲线变形为另一条曲线。这类似于考虑所有可能的方法来将一根绳子缠绕在一定数量的垂直销子上。为了研究这些曲线,通过考虑作为曲线极限出现的“广义曲线”,在抽象上更上一层楼是有用的。这是一个典型的数学过程,类似于要理解所有有理数(如2/3或47/23),必须考虑所有实数(如pi或2的平方根)。Bonahon正在发展广义曲线空间上的微积分,类似于实数空间上的经典微积分。这使他能够计算简单闭曲线空间上某些自然函数的导数,并得到其变化的估计。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francis Bonahon其他文献
Variétés Hyperboliques À Géodésiques Arbitrairement Courtes
各种双曲线和大地仲裁法庭
- DOI:
10.1112/blms/20.3.255 - 发表时间:
1988 - 期刊:
- 影响因子:0.9
- 作者:
Francis Bonahon;Jean - 通讯作者:
Jean
Difféotopies des espaces lenticulaires
- DOI:
10.1016/0040-9383(83)90016-2 - 发表时间:
1983 - 期刊:
- 影响因子:0
- 作者:
Francis Bonahon - 通讯作者:
Francis Bonahon
Miraculous cancellations for quantum $SL_2$
量子 $SL_2$ 奇迹般取消
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Francis Bonahon - 通讯作者:
Francis Bonahon
Central elements in the $$\textrm{SL}_d$$ -skein algebra of a surface
- DOI:
10.1007/s00209-024-03559-9 - 发表时间:
2024-07-26 - 期刊:
- 影响因子:1.000
- 作者:
Francis Bonahon;Vijay Higgins - 通讯作者:
Vijay Higgins
Central elements in the $mathrm{SL}_d$-skein algebra of a surface
曲面的 $mathrm{SL}_d$-skein 代数中的中心元素
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Francis Bonahon;Vijay Higgins - 通讯作者:
Vijay Higgins
Francis Bonahon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francis Bonahon', 18)}}的其他基金
Character Varieties and Quantum Invariants
字符种类和量子不变量
- 批准号:
1711297 - 财政年份:2017
- 资助金额:
$ 9.52万 - 项目类别:
Continuing Grant
Classical and quantum homomorphisms from discrete groups to Lie groups
从离散群到李群的经典和量子同态
- 批准号:
1406559 - 财政年份:2014
- 资助金额:
$ 9.52万 - 项目类别:
Continuing Grant
Character varieties of surfaces: classical and quantum aspects
表面的特征变化:经典和量子方面
- 批准号:
1105402 - 财政年份:2011
- 资助金额:
$ 9.52万 - 项目类别:
Standard Grant
Classical and quantum hyperbolic geometry
经典和量子双曲几何
- 批准号:
0604866 - 财政年份:2006
- 资助金额:
$ 9.52万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometry of Hyperbolic 3-Manifolds
数学科学:双曲 3 流形的几何
- 批准号:
9201466 - 财政年份:1992
- 资助金额:
$ 9.52万 - 项目类别:
Continuing Grant
Mathematical Sciences: Limit Sets of Kleinian Groups and Hyperbolic Groups
数学科学:克莱因群和双曲群的极限集
- 批准号:
9001895 - 财政年份:1990
- 资助金额:
$ 9.52万 - 项目类别:
Standard Grant
Mathematical Sciences: Presidential Young Investigator Award
数学科学:总统青年研究员奖
- 批准号:
8958665 - 财政年份:1989
- 资助金额:
$ 9.52万 - 项目类别:
Continuing Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Conference on Symplectic Geometry and Topology at the International Center for Mathematical Sciences
国际数学科学中心辛几何和拓扑会议
- 批准号:
1608194 - 财政年份:2016
- 资助金额:
$ 9.52万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - Hodge Theory, Complex Geometry, and Representation Theory
NSF/CBMS 数学科学区域会议 - 霍奇理论、复几何和表示论
- 批准号:
1137952 - 财政年份:2012
- 资助金额:
$ 9.52万 - 项目类别:
Standard Grant
IGERT: Geometry and Dynamics -- Integrated Education in the Mathematical Sciences
IGERT:几何与动力学——数学科学综合教育
- 批准号:
1068620 - 财政年份:2011
- 资助金额:
$ 9.52万 - 项目类别:
Continuing Grant
CBMS Regional Conference in the Mathematical Sciences - "Families of Riemann surfaces and Weil-Petersson Geometry'' - Summer 2009; New Britain, CT
CBMS 数学科学区域会议 -“黎曼曲面家族和 Weil-Petersson 几何” - 2009 年夏季;康涅狄格州新不列颠
- 批准号:
0834134 - 财政年份:2009
- 资助金额:
$ 9.52万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: Tropical Geometry & Mirror Symmetry, December 13-17, 2008
NSF/CBMS 数学科学区域会议:热带几何
- 批准号:
0735319 - 财政年份:2008
- 资助金额:
$ 9.52万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: The Interplay Between Convex Geometry and Harmonic Analysis, July 29 - August 2, 2006
NSF/CBMS 数学科学区域会议:凸几何与调和分析之间的相互作用,2006 年 7 月 29 日至 8 月 2 日
- 批准号:
0532656 - 财政年份:2006
- 资助金额:
$ 9.52万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: Fully Nonlinear Equations in Geometry
NSF/CBMS 数学科学区域会议:几何中的完全非线性方程
- 批准号:
0225735 - 财政年份:2003
- 资助金额:
$ 9.52万 - 项目类别:
Standard Grant
Mathematical Sciences: Dynamics, Hyperbolic Geometry and Quasiconformal Maps
数学科学:动力学、双曲几何和拟共形映射
- 批准号:
9996234 - 财政年份:1998
- 资助金额:
$ 9.52万 - 项目类别:
Continuing Grant
Mathematical Sciences: The Geometry of Kernel Subgroups of Nonpositively Curved Cube Complex Groups
数学科学:非正曲立方复群核子群的几何
- 批准号:
9996342 - 财政年份:1998
- 资助金额:
$ 9.52万 - 项目类别:
Standard Grant
Mathematical Sciences: Hamiltonian Theory of Soliton Equations and Geometry of Moduli Spaces
数学科学:孤子方程哈密顿理论和模空间几何
- 批准号:
9802577 - 财政年份:1998
- 资助金额:
$ 9.52万 - 项目类别:
Standard Grant