Character varieties of surfaces: classical and quantum aspects
表面的特征变化:经典和量子方面
基本信息
- 批准号:1105402
- 负责人:
- 金额:$ 17.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-15 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Project proposes to investigate the character varieties of surfaces, consisting of homomorphisms from the fundamental group of a surface to a Lie group. Character varieties occur in many areas of mathematics and mathematical physics. The Project combines several aspects of character varieties, involving in particular geometry, quantum topology and dynamical systems. Its overarching thread is to capitalize on various techniques and insights that, over the years, have been developed for certain low-dimensional groups and to apply these to a wider range of Lie groups and problems. The Project is articulated along two main themes. The first theme involves classical geometry and is focused on the case where the Lie group is the special linear group. It proposes to analyze the so-called Hitchin component of the corresponding character variety. The second theme is centered on the quantization of character varieties. In particular, one of the main goals of the Project is to classify all representations of the Kauffman skein algebra. A final part of the Project is devoted to the 3-dimensional implications of this analysis of representations of the Kauffman skein algebra, and in particular to applications to the Volume Conjecture. Many phenomena in mathematics and mathematical physics involve the mathematical notion of flat bundle over a surface or, equivalently, of homomorphisms from the fundamental group of a surface to a Lie group. In particular, the case where the Lie group consist of 2-by-2 matrices is now relatively well understood, because of its relationship to (non-euclidean) hyperbolic geometry. The thrust of the Project is to build on this expertise to attack more complicated Lie groups and to investigate more complex phenomena. It borrows ideas from the theory of dynamical systems (popularized under the name of "chaos theory") and from quantum field theory in physics.
该项目建议调查的字符品种的表面,从一个表面的基本群的李群同态组成。字符变体出现在数学和数学物理的许多领域。该项目结合了字符品种的几个方面,特别涉及几何,量子拓扑和动力系统。 其总体思路是利用多年来为某些低维群开发的各种技术和见解,并将其应用于更广泛的李群和问题。该项目沿着两个主题展开。第一个主题涉及经典几何,重点是李群是特殊线性群的情况。它建议分析相应的字符品种的所谓希钦组件。第二个主题是围绕着量化的性格品种。特别是,该项目的主要目标之一是分类考夫曼绞代数的所有表示。该项目的最后一部分是致力于3维的影响,这种分析表示的考夫曼绞代数,特别是应用体积猜想。数学和数学物理中的许多现象都涉及曲面上平坦丛的数学概念,或者等价地,从曲面的基本群到李群的同态。特别地,李群由2 × 2矩阵组成的情况现在相对较好地理解,因为它与(非欧几里德)双曲几何的关系。该项目的主旨是建立在这方面的专业知识,攻击更复杂的李群,并调查更复杂的现象。它借用了动力系统理论(以“混沌理论”的名义推广)和物理学中的量子场论的思想。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francis Bonahon其他文献
Variétés Hyperboliques À Géodésiques Arbitrairement Courtes
各种双曲线和大地仲裁法庭
- DOI:
10.1112/blms/20.3.255 - 发表时间:
1988 - 期刊:
- 影响因子:0.9
- 作者:
Francis Bonahon;Jean - 通讯作者:
Jean
Difféotopies des espaces lenticulaires
- DOI:
10.1016/0040-9383(83)90016-2 - 发表时间:
1983 - 期刊:
- 影响因子:0
- 作者:
Francis Bonahon - 通讯作者:
Francis Bonahon
Miraculous cancellations for quantum $SL_2$
量子 $SL_2$ 奇迹般取消
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Francis Bonahon - 通讯作者:
Francis Bonahon
Central elements in the $$\textrm{SL}_d$$ -skein algebra of a surface
- DOI:
10.1007/s00209-024-03559-9 - 发表时间:
2024-07-26 - 期刊:
- 影响因子:1.000
- 作者:
Francis Bonahon;Vijay Higgins - 通讯作者:
Vijay Higgins
Central elements in the $mathrm{SL}_d$-skein algebra of a surface
曲面的 $mathrm{SL}_d$-skein 代数中的中心元素
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Francis Bonahon;Vijay Higgins - 通讯作者:
Vijay Higgins
Francis Bonahon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francis Bonahon', 18)}}的其他基金
Character Varieties and Quantum Invariants
字符种类和量子不变量
- 批准号:
1711297 - 财政年份:2017
- 资助金额:
$ 17.16万 - 项目类别:
Continuing Grant
Classical and quantum homomorphisms from discrete groups to Lie groups
从离散群到李群的经典和量子同态
- 批准号:
1406559 - 财政年份:2014
- 资助金额:
$ 17.16万 - 项目类别:
Continuing Grant
Classical and quantum hyperbolic geometry
经典和量子双曲几何
- 批准号:
0604866 - 财政年份:2006
- 资助金额:
$ 17.16万 - 项目类别:
Continuing Grant
Low-dimensional Topology and Geometry
低维拓扑和几何
- 批准号:
0103511 - 财政年份:2001
- 资助金额:
$ 17.16万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometry of Hyperbolic 3-Dimensional Manifolds
数学科学:双曲三维流形的几何
- 批准号:
9504282 - 财政年份:1995
- 资助金额:
$ 17.16万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometry of Hyperbolic 3-Manifolds
数学科学:双曲 3 流形的几何
- 批准号:
9201466 - 财政年份:1992
- 资助金额:
$ 17.16万 - 项目类别:
Continuing Grant
Mathematical Sciences: Limit Sets of Kleinian Groups and Hyperbolic Groups
数学科学:克莱因群和双曲群的极限集
- 批准号:
9001895 - 财政年份:1990
- 资助金额:
$ 17.16万 - 项目类别:
Standard Grant
Mathematical Sciences: Presidential Young Investigator Award
数学科学:总统青年研究员奖
- 批准号:
8958665 - 财政年份:1989
- 资助金额:
$ 17.16万 - 项目类别:
Continuing Grant
相似国自然基金
正则半单Hessenberg varieties上的代数拓扑
- 批准号:11901218
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
K3 surfaces and Calabi-Yau varieties from a inseparable viewpoint
从密不可分的角度来看 K3 表面和 Calabi-Yau 品种
- 批准号:
20K14296 - 财政年份:2020
- 资助金额:
$ 17.16万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Level Structures on K3 Surfaces, and Constrained Rational Points on Log Fano Varieties
K3 曲面上的水平结构和 Log Fano 簇上的约束有理点
- 批准号:
1902274 - 财政年份:2019
- 资助金额:
$ 17.16万 - 项目类别:
Continuing Grant
Low-dimensional Topology: Knotted surfaces as real algebraic varieties
低维拓扑:作为实代数簇的结曲面
- 批准号:
18F18751 - 财政年份:2018
- 资助金额:
$ 17.16万 - 项目类别:
Grant-in-Aid for JSPS Fellows
EAPSI: An Investigation of Closed Surfaces in 3-manifolds via Character Varieties
EAPSI:通过特征变异研究 3 流形中的闭合曲面
- 批准号:
1713920 - 财政年份:2017
- 资助金额:
$ 17.16万 - 项目类别:
Fellowship Award
Studies on K3 surfaces and related varieties using reduction modulo p
使用约简模 p 研究 K3 表面和相关品种
- 批准号:
16K17560 - 财政年份:2016
- 资助金额:
$ 17.16万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Brauer-Manin obstruction, K3 surfaces and families of twists of abelian varieties
布劳尔-马宁阻塞、K3 表面和阿贝尔变种的扭曲家族
- 批准号:
EP/M020266/1 - 财政年份:2015
- 资助金额:
$ 17.16万 - 项目类别:
Research Grant
Study of algebraic curves, K3 surfaces and Abelian varieties
代数曲线、K3曲面和阿贝尔簇的研究
- 批准号:
15K04815 - 财政年份:2015
- 资助金额:
$ 17.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Moduli theoretic study of Fano varieties and Enriques surfaces
Fano簇和Enriques曲面的Moduli理论研究
- 批准号:
22340007 - 财政年份:2010
- 资助金额:
$ 17.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
K3 surfaces and related algebraic varieties
K3 曲面和相关代数簇
- 批准号:
20340002 - 财政年份:2008
- 资助金额:
$ 17.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on arithmetic and geometry for algebraic varieties in positive characteristic.
正特性代数簇的算术和几何研究。
- 批准号:
17540027 - 财政年份:2005
- 资助金额:
$ 17.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)