Mathematical Sciences: Percolation and Related Problems

数学科学:渗透及相关问题

基本信息

  • 批准号:
    9504462
  • 负责人:
  • 金额:
    $ 7.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1995
  • 资助国家:
    美国
  • 起止时间:
    1995-06-01 至 1998-11-30
  • 项目状态:
    已结题

项目摘要

9504462 Alexander Abstract Percolation is perhaps the most fundamental model in which one can study how small-scale randomness produces large-scale phenomena, such as phase transitions, which are essentially nonrandom. Alexander proposes to investigate the following aspects of the subject. (1) The use of percolation ideas to analyze the behavior of two-dimensional incompressible flows with random potentials. (2) The properties of a new random cluster model which, like the standard FK random cluster model, is closely related to the Ising model. (3) The use of percolation ideas to create a model, defined on a small scale, for large-scale phenomena which occur when water containing impurities freezes. (4) The geometry of finite clusters, and its relation to the cluster size distribution, for certain continuum models of percolation. (5) The interrelation between percolation behavior of the graph and other properties for the "minimal spanning forest" of a stationary random labeled graph. (6) The size of the fluctuations in the boundary of the region which can be reached by a fixed time in first-passage percolation. Additionally, Alexander will investigate a string-matching problem related to the reconstruction of DNA sequences from many short overlapping segments. This work is part of an ongoing effort by mathematicians and physicists to understand how small-scale randomness is reflected in large-scale, or "macroscopic," properties of various systems in the natural world. A typical example is a piece of iron--each atom has a magnetic field aligned in a particular direction. These directions are random, but nearby atoms tend to align in approximately the same direction, particularly when the temperature is low. In essence, the tendency toward randomness, which increases with temperature, competes with the tendency to align. Clusters of atoms with similar alignments--all "up,", all "down," etc.--are formed, and the random geometry of these clusters--what sizes of clusters occur with w hat probabilities--helps determine macroscopic properties of the iron. When the temperature goes below a certain precise "critical point," there is a sudden change in the macroscopic behavior of the iron--the tendency to align wins out, so that a very large cluster of aligned atoms is formed, and the iron can become a magnet. Such "critical phenomena"--sudden changes in macroscopic behavior when some measurement crosses a critical value--occur in a variety of contexts; recently, for example, there has been concern that the density of manmade junk orbiting the earth is approaching a critical level, above which the frequency of collisions will dramatically increase. Other systems in which small-scale randomness determines macroscopic properties, and critical phenomena may occur, include (i) waves traveling through irregular materials, such as seismic waves through the earth's crust; (ii) transport of heat by ocean currents in the presence of turbulence, which affects global climate; and (iii) percolation of liquid through a porous material, such as water or oil through underground rock. Mathematicians and physicists have long understood that many aspects of the relation between small-scale randomness and macroscopic properties, including critical phenomena, do not depend on the particular system being studied. One can therefore gain insight into real-world phenomena by studying abstract systems not intended to model specifically magnets, or porous rock, or any other particular part of the physical world. The systems which Alexander will investigate are examples of such abstract systems.
摘要渗透可能是最基本的模型,人们可以用它来研究小尺度随机性如何产生大尺度现象,如相变,而相变本质上是非随机的。亚历山大建议调查这个问题的以下几个方面。(1)利用渗流思想分析具有随机势的二维不可压缩流的行为。(2)一种新的随机聚类模型的性质,与标准FK随机聚类模型相似,与Ising模型密切相关。(3)利用渗透思想创建一个模型,在小尺度上定义,用于包含杂质的水结冰时发生的大尺度现象。(4)对于某些连续渗流模型,有限簇的几何形状及其与簇大小分布的关系。(5)平稳随机标记图的“最小生成森林”的图的渗透行为与其他性质之间的相互关系。(6)首道渗流在一定时间内所能达到的区域边界波动大小。此外,Alexander将研究与从许多短重叠片段重建DNA序列相关的字符串匹配问题。这项工作是数学家和物理学家正在进行的努力的一部分,目的是了解自然世界中各种系统的大规模或“宏观”特性如何反映小规模随机性。一个典型的例子是一块铁——每个原子都有一个按特定方向排列的磁场。这些方向是随机的,但附近的原子倾向于以大致相同的方向排列,特别是在温度较低的时候。从本质上讲,随温度升高而增加的随机性趋势与排列趋势是相互竞争的。类似排列的原子簇——全部“向上”、全部“向下”等——形成,这些簇的随机几何形状——簇的大小和概率——有助于确定铁的宏观性质。当温度低于某个精确的“临界点”时,铁的宏观行为会突然发生变化——排列的倾向胜出,因此形成了一个非常大的排列原子簇,铁可以变成磁铁。这种“临界现象”——当某些测量值超过临界值时宏观行为的突然变化——发生在各种情况下;例如,最近有人担心绕地球运行的人造垃圾的密度正在接近一个临界水平,超过这个水平,碰撞的频率将急剧增加。在其他系统中,小尺度随机性决定宏观特性,并可能发生临界现象,包括(i)穿过不规则物质的波,例如穿过地壳的地震波;(ii)在湍流存在的情况下由洋流输送热量,从而影响全球气候;(三)液体通过多孔物质渗透,如水或油通过地下岩石。数学家和物理学家早就认识到,小尺度随机性和宏观性质(包括临界现象)之间关系的许多方面并不取决于所研究的特定系统。因此,人们可以通过研究抽象系统来洞察现实世界的现象,而不是专门为磁铁、多孔岩石或物理世界的任何其他特定部分建模。亚历山大将要研究的系统就是这种抽象系统的例子。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kenneth Alexander其他文献

Sensitization by annular surrounds: sensitizaton and masking
  • DOI:
    10.1016/0042-6989(71)90065-4
  • 发表时间:
    1971-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Davida Y. Teller;Charles Matter;W. Daniel Phillips;Kenneth Alexander
  • 通讯作者:
    Kenneth Alexander
Erratum to: Predicting eutectic behavior of drugs and excipients by unique calculations
Characterization of crystalline and amorphous content in pharmaceutical solids by dielectric thermal analysis
  • DOI:
    10.1007/s10973-011-2140-2
  • 发表时间:
    2012-01-20
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Manik Pavan Maheswaram;Dhruthiman Mantheni;Indika Perera;Hareesha Venumuddala;Alan Riga;Kenneth Alexander
  • 通讯作者:
    Kenneth Alexander
Thermal analysis of water and magnesium hydroxide content in commercial pharmaceutical suspensions milk of magnesia
  • DOI:
    10.1007/s10973-012-2429-9
  • 发表时间:
    2012-05-11
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Lakshmi Kaza;Hany F. Sobhi;Jeffrey A. Fruscella;Chris Kaul;Shravan Thakur;Naullage I. Perera;Kenneth Alexander;Alan T. Riga
  • 通讯作者:
    Alan T. Riga
Rationale for Reducing the Spread of Human Papillomavirus in Adolescents: Strategies to Improve Outcomes (CME Multimedia Activity)
  • DOI:
    10.1016/j.jadohealth.2011.10.014
  • 发表时间:
    2012-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kenneth Alexander;Alison Moriarty Daley;Amanda Frisch Dempsey
  • 通讯作者:
    Amanda Frisch Dempsey

Kenneth Alexander的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kenneth Alexander', 18)}}的其他基金

Statistical Mechanics and Related Probability Theory
统计力学及相关概率论
  • 批准号:
    0804934
  • 财政年份:
    2008
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Statistical Mechanics and the Probability Theory
统计力学和概率论
  • 批准号:
    0405915
  • 财政年份:
    2004
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Probability and Statistical Mechanics
概率与统计力学
  • 批准号:
    0103790
  • 财政年份:
    2001
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Probability Models from Statistical Mechanics
统计力学的概率模型
  • 批准号:
    9802368
  • 财政年份:
    1998
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Percolation, Particle Systems, and Other Stochastic Processes
数学科学:渗滤、粒子系统和其他随机过程
  • 批准号:
    9206139
  • 财政年份:
    1992
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Percolation and Related Processes
数学科学:渗滤及相关过程
  • 批准号:
    9006395
  • 财政年份:
    1990
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Limit Theorems for Function-Indexed Empirical Processes
数学科学:函数索引经验过程的极限定理
  • 批准号:
    8702906
  • 财政年份:
    1987
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
  • 批准号:
    8311686
  • 财政年份:
    1983
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Fellowship Award

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Amalgamating Evidence About Causes: Medicine, the Medical Sciences, and Beyond
合并有关原因的证据:医学、医学科学及其他领域
  • 批准号:
    AH/Y007654/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Research Grant
International Centre for Mathematical Sciences 2024
国际数学科学中心 2024
  • 批准号:
    EP/Z000467/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Research Grant
Isaac Newton Institute for Mathematical Sciences (INI)
艾萨克·牛顿数学科学研究所 (INI)
  • 批准号:
    EP/Z000580/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Research Grant
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
  • 批准号:
    2330043
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Cooperative Agreement
REU Site: Bigelow Laboratory for Ocean Sciences - Undergraduate Research Experience in the Gulf of Maine and the World Ocean
REU 站点:毕格罗海洋科学实验室 - 缅因湾和世界海洋的本科生研究经验
  • 批准号:
    2349230
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Doctoral Dissertation Research: A Syndrome of Care: The New Sciences of Survivorship at the Frontier of Medical Rescue
博士论文研究:护理综合症:医疗救援前沿的生存新科学
  • 批准号:
    2341900
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Conference: Emerging Statistical and Quantitative Issues in Genomic Research in Health Sciences
会议:健康科学基因组研究中新出现的统计和定量问题
  • 批准号:
    2342821
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
ICE-TI: A Decolonized Approach to an AAS in Social and Behavioral Sciences
ICE-TI:社会和行为科学中 AAS 的非殖民化方法
  • 批准号:
    2326751
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317573
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Meta-analysis for environmental sciences
环境科学荟萃分析
  • 批准号:
    NE/Y003721/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了