Mathematical Sciences: Cells of Harish-Chandra Modules and the Jacquet Functor

数学科学:Harish-Chandra 模的单元和 Jacquet 函子

基本信息

  • 批准号:
    9504778
  • 负责人:
  • 金额:
    $ 7.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1995
  • 资助国家:
    美国
  • 起止时间:
    1995-05-01 至 1999-04-30
  • 项目状态:
    已结题

项目摘要

DMS-9504778 PI: McGovern McGovern will study double cells of Harish-Chandra modules for real classical groups, seeking to understand them simultaneously as sets and modules for the complex Weyl group. The main tool to be used is Garfinkle's standard domino tableaux. The main objective is show that every real cell is isomorphic as a based module to a complex cell. This implies that any graded Jacquet functor can be realized as a composition of wall-crossing operators which are easy to compute/ The theory of Lie groups, named in honor of the Norwegian mathematician Sophus Lie, has been one of the major themes in twentieth century mathematics. As the mathematical vehicle for exploiting the symmetries inherent in a system, the representation theory of Lie groups has had a profound impact upon mathematics itself, particularly in analysis and number theory, and upon theoretical physics, especially quantum mechanics and elementary particle physics.
DMS-9504778 PI:McGovern 麦戈文将研究双细胞的哈里什-钱德拉模块的真实的经典群体,寻求了解他们同时作为集和模块的复杂外尔群。 使用的主要工具是Garfinkle的标准多米诺骨牌tableaux。 主要目的是证明每一个真实的胞元作为基模同构于一个复胞元。 这意味着任何分次Jacquet函子都可以实现为易于计算的跨壁算子的复合。 李群理论是以挪威数学家Sophus Lie的荣誉命名的,是世纪数学的重要课题之一。 李群表示论作为利用系统中固有对称性的数学工具,对数学本身,特别是分析和数论,以及理论物理学,特别是量子力学和基本粒子物理学产生了深远的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William McGovern其他文献

A Qualitative Exploration of the Implications of a Differential Multi–Agency Understanding and Interpretation of Domestic Abuse
  • DOI:
    10.1007/s10896-025-00867-4
  • 发表时间:
    2025-03-31
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Kausiki Sarma;Ruth McGovern;Deborah Smart;William McGovern;Simon Barett;Eileen Kaner;Victoria Cooling;Paige Thomason;Simon Hackett;Hayley Alderson
  • 通讯作者:
    Hayley Alderson
Mechanisms That Promote and Support Family Preservation for Children at the Edge of Care: A Realist Synthesis
促进和支持对处于护理边缘的儿童进行家庭保护的机制:现实综合
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2
  • 作者:
    S. Redgate;D. Smart;Simon Barrett;Carrie Barron;Samantha Burns;Hilda Frost;William McGovern;Vikki Peart;E. Adams;H. Alderson;Eileen Kaner;R. McGovern
  • 通讯作者:
    R. McGovern

William McGovern的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William McGovern', 18)}}的其他基金

Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    9107890
  • 财政年份:
    1991
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Fellowship Award

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Amalgamating Evidence About Causes: Medicine, the Medical Sciences, and Beyond
合并有关原因的证据:医学、医学科学及其他领域
  • 批准号:
    AH/Y007654/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Research Grant
International Centre for Mathematical Sciences 2024
国际数学科学中心 2024
  • 批准号:
    EP/Z000467/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Research Grant
Isaac Newton Institute for Mathematical Sciences (INI)
艾萨克·牛顿数学科学研究所 (INI)
  • 批准号:
    EP/Z000580/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Research Grant
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
  • 批准号:
    2330043
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Cooperative Agreement
REU Site: Bigelow Laboratory for Ocean Sciences - Undergraduate Research Experience in the Gulf of Maine and the World Ocean
REU 站点:毕格罗海洋科学实验室 - 缅因湾和世界海洋的本科生研究经验
  • 批准号:
    2349230
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Doctoral Dissertation Research: A Syndrome of Care: The New Sciences of Survivorship at the Frontier of Medical Rescue
博士论文研究:护理综合症:医疗救援前沿的生存新科学
  • 批准号:
    2341900
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Conference: Emerging Statistical and Quantitative Issues in Genomic Research in Health Sciences
会议:健康科学基因组研究中新出现的统计和定量问题
  • 批准号:
    2342821
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
ICE-TI: A Decolonized Approach to an AAS in Social and Behavioral Sciences
ICE-TI:社会和行为科学中 AAS 的非殖民化方法
  • 批准号:
    2326751
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317573
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317570
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了