Mathematical Sciences: Stein's Method and the Zero Bias Transformation
数学科学:斯坦因方法和零偏差变换
基本信息
- 批准号:9505075
- 负责人:
- 金额:$ 7.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-07-15 至 1997-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9505075 Goldstein Abstract In the past two decades, Stein's method has become an increasingly valuable tool for obtaining bounds for distributional approximations of certain sums of dependent random variables by the normal or Poisson. The investigators propose to explore a new distributional transformation, coined the ``zero bias transformation,'' and an associated new coupling that may be used in conjunction with Stein's method for obtaining bounds to the normal for sums of random variables having particular dependence structures. The new coupling can be used to shed light on certain questions where previous methods have yielded only an incomplete picture. In addition, when approximating the sum of symmetric dependent random variables, or those having vanishing third moment, the zero bias coupling is natural and promises to yield smaller bounds on the approximation error. The zero bias technique has numerous potential applications to cases of both local and global dependence, for instance, to nonlinear sampling and rank statistics. Moreover, the zero bias transformation may be defined for general random objects such as random measures and diffusions, with applications to Empirical Central Limit Theorems for dependent observations, and a process treatment of the Wald Wolfowitz theorem. The normal curve is used extensively in a variety of statistical applications, such as when sampling a large lot of goods for quality control, or in opinion polling. In real situations the normal curve is often only an idealization of something too difficult to compute. In the context of sampling, better accuracy of the normal approximation comes with larger sample sizes, but sampling is typically expensive or time consuming. Therefore, it is useful to have an idea of how well the normal curve approximates the true situation for small and realistic sample sizes. The normal curve approximation also appears in a variety of other, often more complex, statistical contexts. There exist a number of approaches for assessing the accuracy of the normal approximation, each best suited to a particular need. In adding to these techniques, the investigators are developing a new method which improves on those existing, for some situations. For instance, use of the new method, applied in the sampling context, would result in more reliable statistical conclusions drawn from realistic samples.
9505075 Goldstein摘要 在过去的二十年里,Stein的方法已经成为一个越来越有价值的工具,用于获得正常或泊松分布近似的某些相依随机变量的总和的界限。研究人员建议探索一种新的分布变换,称为“零偏差变换”,以及一种相关的新耦合,可以与Stein的方法结合使用,用于获得具有特定依赖结构的随机变量和的正常范围。新的耦合可以用来阐明某些问题,以前的方法只产生了一个不完整的图片。此外,当近似的对称相依随机变量的总和,或那些具有消失的三阶矩,零偏耦合是自然的,并承诺产生更小的边界上的近似误差。零偏技术在局部和全局依赖的情况下有许多潜在的应用,例如,非线性抽样和秩统计。此外,零偏变换可以定义为一般随机对象,如随机测度和扩散,应用于经验中心极限定理的相关观测,和沃尔福威茨定理的过程处理。 正态曲线广泛应用于各种统计应用中,例如为质量控制或民意调查而对大量商品进行抽样时。在真实的情况下,法向曲线往往只是难以计算的东西的理想化。在采样的上下文中,更好的正态近似精度伴随着更大的样本量,但采样通常是昂贵或耗时的。因此,了解正态曲线在多大程度上接近小样本和实际样本量的真实情况是有用的。正态曲线近似也出现在各种其他的,往往更复杂的统计背景。存在许多用于评估正态近似的准确性的方法,每种方法最适合于特定的需要。除了这些技术,研究人员正在开发一种新的方法,在某些情况下改进现有的方法。例如,在抽样中使用新方法,将从实际样本中得出更可靠的统计结论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Larry Goldstein其他文献
Functional BKR Inequalities, and their Duals, with Applications
- DOI:
10.1007/s10959-007-0068-z - 发表时间:
2007-04-26 - 期刊:
- 影响因子:0.600
- 作者:
Larry Goldstein;Yosef Rinott - 通讯作者:
Yosef Rinott
Adult intimate partner violence perpetrators are significantly more likely to have witnessed intimate partner violence as a child than nonperpetrators.
成年亲密伴侣暴力施暴者比非施暴者更有可能在儿童时期目睹亲密伴侣暴力。
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:3.6
- 作者:
A. Ernst;S. Weiss;Jennifer Hall;Ross M. Clark;B. Coffman;Larry Goldstein;Kenlyn Hobley;T. Dettmer;C. Lehrman;M. Merhege;B. Corum;T. Rihani;Melissa Valdez - 通讯作者:
Melissa Valdez
A BKR Operation for Events Occurring for Disjoint Reasons with High Probability
- DOI:
10.1007/s11009-018-9623-6 - 发表时间:
2018-03-19 - 期刊:
- 影响因子:1.000
- 作者:
Larry Goldstein;Yosef Rinott - 通讯作者:
Yosef Rinott
Parametric and Non-Parametric Estimation of a Random Diffusion Equation-Based Population Model for Deconvolving Blood/Breath Alcohol Concentration from Transdermal Alcohol Biosensor Data with Uncertainty Quantification*
基于随机扩散方程的群体模型的参数和非参数估计,用于通过不确定性定量*对透皮酒精生物传感器数据中的血液/呼吸酒精浓度进行解卷积*
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Maria Allayioti;Clemens Oszkinat;Emily Saldich;Larry Goldstein;S. Luczak;Chunming Wang;I. Rosen - 通讯作者:
I. Rosen
ATORVASTATIN REDUCES TOTAL EVENTS OVERALL AND ACROSS VASCULAR BEDS IN THE SPARCL TRIAL
- DOI:
10.1016/s0735-1097(20)32829-1 - 发表时间:
2020-03-24 - 期刊:
- 影响因子:
- 作者:
Michael Szarek;Pierre Amarenco;Alfred Callahan;David DeMicco;Rana Fayyad;Larry Goldstein;Rachel Laskey;Henrik Sillesen;K. Michael Welch - 通讯作者:
K. Michael Welch
Larry Goldstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Larry Goldstein', 18)}}的其他基金
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
REU Site: Bigelow Laboratory for Ocean Sciences - Undergraduate Research Experience in the Gulf of Maine and the World Ocean
REU 站点:毕格罗海洋科学实验室 - 缅因湾和世界海洋的本科生研究经验
- 批准号:
2349230 - 财政年份:2024
- 资助金额:
$ 7.9万 - 项目类别:
Continuing Grant
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
- 批准号:
2330043 - 财政年份:2024
- 资助金额:
$ 7.9万 - 项目类别:
Cooperative Agreement
Amalgamating Evidence About Causes: Medicine, the Medical Sciences, and Beyond
合并有关原因的证据:医学、医学科学及其他领域
- 批准号:
AH/Y007654/1 - 财政年份:2024
- 资助金额:
$ 7.9万 - 项目类别:
Research Grant
International Centre for Mathematical Sciences 2024
国际数学科学中心 2024
- 批准号:
EP/Z000467/1 - 财政年份:2024
- 资助金额:
$ 7.9万 - 项目类别:
Research Grant
Isaac Newton Institute for Mathematical Sciences (INI)
艾萨克·牛顿数学科学研究所 (INI)
- 批准号:
EP/Z000580/1 - 财政年份:2024
- 资助金额:
$ 7.9万 - 项目类别:
Research Grant
ICE-TI: A Decolonized Approach to an AAS in Social and Behavioral Sciences
ICE-TI:社会和行为科学中 AAS 的非殖民化方法
- 批准号:
2326751 - 财政年份:2024
- 资助金额:
$ 7.9万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317573 - 财政年份:2024
- 资助金额:
$ 7.9万 - 项目类别:
Continuing Grant
Doctoral Dissertation Research: A Syndrome of Care: The New Sciences of Survivorship at the Frontier of Medical Rescue
博士论文研究:护理综合症:医疗救援前沿的生存新科学
- 批准号:
2341900 - 财政年份:2024
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
Conference: Emerging Statistical and Quantitative Issues in Genomic Research in Health Sciences
会议:健康科学基因组研究中新出现的统计和定量问题
- 批准号:
2342821 - 财政年份:2024
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
Meta-analysis for environmental sciences
环境科学荟萃分析
- 批准号:
NE/Y003721/1 - 财政年份:2024
- 资助金额:
$ 7.9万 - 项目类别:
Training Grant