Mathematical Sciences: Existence and Blow-Up of Solutions to Systems of Nonlinear Wave Equations
数学科学:非线性波动方程组解的存在性和放大
基本信息
- 批准号:9623207
- 负责人:
- 金额:$ 6.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-06-01 至 1999-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract Lindblad 9623207 Lindblad's research concerns systems of nonlinear wave equations. The basic mathematical questions are: (i) Does one have local existence and uniqueness of solutions in a certain class? (ii) Does one have blow-up of solutions? (iii) What is the long time behavior of solutions? Some of the main techniques to be used are (iv) Pseudo-Riemannian or Lorentzian geometry, (v) Fourier transform methods (vi) Energy-methods. Lindblad proposes to carry out two projects related to these general questions, combining the techniques mentioned: (I) To answer certain questions concerning low regularity solutions and small data. (II) To study regularity of a free-boundary problem, that occur in nature, for the relativistic Euler equation. Solution to these questions would contribute to our knowledge of fundamental equations from physics. On the one hand we are combining the different techniques (iv)-(vi), and it has usually been the case that interesting and useful mathematics originates from interaction between different fields of mathematics as well as between mathematics and other sciences. On the other hand, the study of Einstein's equations have to a large extent been neglected by mathematicians. It is e.g. perceivable that one could use gravitational waves as a means of observing the universe. To solve problem (II) we are developing completely new techniques, and we believe that it will be useful for studying many other problems as well, e.g. an interface between two fluids. Such a problem would have industrial applications. Lindblad is also using computers and numerical calculations in his research, which makes it more accessible for applied scientists. The practical motivation for this research is that several of the important equations in physics can be written as a system of nonlinear wave equations. There are examples of this in classical field theory and continuum mechanics as well as in classical physics, e.g. Einstein's equations, the Yang-Mills equatio n and the equations of nonlinear elasticity. For some equations, for example Yang-Mills, we expect the solutions to remain regular for all times. On the other hand, for Einstein's equations and the equations of nonlinear elasticity, the solutions blow-up for certain data. For Einstein's equation the blow-up occurs in nature (black holes in general relativity) whereas for the equation of nonlinear elasticity the blow-up is due to the fact that the equations no longer describe what is happening in nature accurately. In either case it is important to understand the mechanism of existence versus blow-up.
摘要Lindblad 9623207 林德布拉德的研究涉及系统的非线性波动方程。基本的数学问题是:(1)是否有一个局部存在性和唯一性的解决方案,在某一类?(ii)有解的爆破吗? (iii)溶液的长期行为是什么? 要使用的一些主要技术是(四)伪黎曼或洛伦兹几何,(五)傅立叶变换方法(六)能量方法。 Lindblad提出了两个与这些一般问题相关的项目,结合上述技术:(I)回答有关低正则性解决方案和小数据的某些问题。 (II)研究自然界中存在的相对论性欧拉方程自由边界问题的正则性。这些问题的解决将有助于我们从物理学的基本方程的知识。一方面,我们正在结合不同的技术(iv)-(vi),通常情况下,有趣和有用的数学起源于不同领域之间的相互作用, 数学,以及数学与其他科学之间的关系。另一方面,爱因斯坦方程的研究在很大程度上被数学家们所忽视。例如,人们可以利用引力波作为观察宇宙的一种手段。为了解决问题(II),我们正在开发全新的技术,我们相信这对研究许多其他问题也是有用的,例如两种流体之间的界面。这样的问题将有工业应用。林德布拉德还在他的研究中使用计算机和数值计算,这使得应用科学家更容易获得。 这项研究的实际动机是,物理学中的几个重要方程可以写成非线性波动方程组。 在经典场论和连续介质力学以及经典物理学中都有这样的例子,例如爱因斯坦方程、杨-米尔斯方程和非线性弹性方程。对于某些方程,例如杨-米尔斯方程,我们期望解始终保持正则。另一方面,对于爱因斯坦方程和非线性弹性力学方程,解在一定条件下爆破。对于爱因斯坦方程来说,爆炸发生在自然界中(广义相对论中的黑洞),而对于非线性弹性方程来说,爆炸是由于方程不再准确地描述自然界中发生的事情。在这两种情况下,重要的是要理解存在与爆炸的机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hans Lindblad其他文献
A Simultaneous Model of the Swedish Krona, the US Dollar and the Euro
瑞典克朗、美元和欧元的同步模型
- DOI:
10.2139/ssrn.981114 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Peter Sellin;Hans Lindblad - 通讯作者:
Hans Lindblad
Scattering from infinity for semilinear wave equations satisfying the null condition or the weak null condition
满足零值条件或弱零值条件的半线性波动方程的无穷远散射
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0.7
- 作者:
Hans Lindblad;Volker Schlue - 通讯作者:
Volker Schlue
Blow-up for solutions of □u=|u|P with small initial data
- DOI:
10.1080/03605309908820708 - 发表时间:
1990 - 期刊:
- 影响因子:1.9
- 作者:
Hans Lindblad - 通讯作者:
Hans Lindblad
Global solutions of nonlinear wave equations
- DOI:
10.1002/cpa.3160450902 - 发表时间:
1992-10 - 期刊:
- 影响因子:3
- 作者:
Hans Lindblad - 通讯作者:
Hans Lindblad
A remark on global existence for small initial data of the minimal surface equation in Minkowskian space time
- DOI:
10.1090/s0002-9939-03-07246-0 - 发表时间:
2002-10 - 期刊:
- 影响因子:0
- 作者:
Hans Lindblad - 通讯作者:
Hans Lindblad
Hans Lindblad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hans Lindblad', 18)}}的其他基金
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
2247637 - 财政年份:2023
- 资助金额:
$ 6.33万 - 项目类别:
Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
1500925 - 财政年份:2015
- 资助金额:
$ 6.33万 - 项目类别:
Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
1101721 - 财政年份:2011
- 资助金额:
$ 6.33万 - 项目类别:
Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
1249160 - 财政年份:2011
- 资助金额:
$ 6.33万 - 项目类别:
Standard Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
1237212 - 财政年份:2011
- 资助金额:
$ 6.33万 - 项目类别:
Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
0801120 - 财政年份:2008
- 资助金额:
$ 6.33万 - 项目类别:
Standard Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
0500899 - 财政年份:2005
- 资助金额:
$ 6.33万 - 项目类别:
Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
0200226 - 财政年份:2002
- 资助金额:
$ 6.33万 - 项目类别:
Continuing Grant
Existence and Blow-Up of Solutions to Systems of Nonlinear Wave Equations
非线性波动方程组解的存在性与扩展
- 批准号:
9970623 - 财政年份:1999
- 资助金额:
$ 6.33万 - 项目类别:
Standard Grant
Mathematical Sciences: Existence and Blow-up of Solutions of Nonlinear Wave Equations
数学科学:非线性波动方程解的存在性与爆炸
- 批准号:
9306797 - 财政年份:1993
- 资助金额:
$ 6.33万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
CBMS Regional Conference in the Mathematical Sciences--The existence and non-existence of periodic orbits in smooth dynamical systems--July 10-14, 2000
CBMS 数学科学区域会议——光滑动力系统中周期轨道的存在与不存在——2000 年 7 月 10-14 日
- 批准号:
9978848 - 财政年份:2000
- 资助金额:
$ 6.33万 - 项目类别:
Standard Grant
Mathematical Sciences: Existence and Computation of Optimal Markov Controls for Adaptive Control Problems
数学科学:自适应控制问题的最优马尔可夫控制的存在性和计算
- 批准号:
9404990 - 财政年份:1994
- 资助金额:
$ 6.33万 - 项目类别:
Continuing Grant
Mathematical Sciences: Existence and Blow-up of Solutions of Nonlinear Wave Equations
数学科学:非线性波动方程解的存在性与爆炸
- 批准号:
9306797 - 财政年份:1993
- 资助金额:
$ 6.33万 - 项目类别:
Standard Grant
Mathematical Sciences: Algorithms and Existence Theorems for Cooperative and Stochastic Games
数学科学:合作博弈和随机博弈的算法和存在定理
- 批准号:
9301052 - 财政年份:1993
- 资助金额:
$ 6.33万 - 项目类别:
Continuing Grant
Mathematical Sciences: Existence of Many Minimal Surfaces onRiemannian Manifolds and Applications in Geometry and Topology
数学科学:黎曼流形上许多极小曲面的存在性及其在几何和拓扑学中的应用
- 批准号:
9307221 - 财政年份:1993
- 资助金额:
$ 6.33万 - 项目类别:
Continuing Grant
Mathematical Sciences: Existence, Singularity & Regularity of Solutions of Scalar Equations & Systems in Connection with Differential Geometry & Mathematical Physic
数学科学:存在性、奇点
- 批准号:
9203978 - 财政年份:1992
- 资助金额:
$ 6.33万 - 项目类别:
Standard Grant
Mathematical Sciences: Existence and Nonexistence of Positive Solutions for Some Superlinear Problems
数学科学:某些超线性问题正解的存在与不存在
- 批准号:
9108021 - 财政年份:1991
- 资助金额:
$ 6.33万 - 项目类别:
Continuing Grant
Mathematical Sciences: Theoretical and Numerical Existence of Many Minimal Surfaces on Riemannian Manifolds
数学科学:黎曼流形上许多极小曲面的理论和数值存在性
- 批准号:
9109265 - 财政年份:1991
- 资助金额:
$ 6.33万 - 项目类别:
Standard Grant
Mathematical Sciences: On the Existence and Qualitative Properties of Solutions of Nonlinear Partical Differential Equations
数学科学:论非线性偏微分方程解的存在性及其定性性质
- 批准号:
9003694 - 财政年份:1990
- 资助金额:
$ 6.33万 - 项目类别:
Standard Grant
Mathematical Sciences: Existence and Regularity of Solutionsto Nonlinear Wave Equations
数学科学:非线性波动方程解的存在性和规律性
- 批准号:
8902136 - 财政年份:1989
- 资助金额:
$ 6.33万 - 项目类别:
Continuing Grant