Mathematical Sciences: Studies in Orthogonal Polynomials and Approximation Theory
数学科学:正交多项式和逼近论研究
基本信息
- 批准号:9706695
- 负责人:
- 金额:$ 12.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-01 至 2001-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nevai Abstract Nevai plans to continue his research in approximation theory, orthogonal polynomials, and related areas of analysis involving various extremal problems, ordinary and generalized polynomial inequalities, difference and differential equations, spectral theory of real, complex, and matrix-valued Jacobi, Hessenberg, and banded matrices, Toeplitz and Hankel forms, and Hilbert space operators. In addition, he will continue working on his "Orthogonal Polynomials" software project in Mathematica and on numerical aspects of orthogonal polynomials. The primary focus of his research will be concentrated on three areas: orthogonal polynomials on the unit circle and on arcs of the unit circle, generalized polynomials and polynomial inequalities, and linear difference equations and growth of their solutions. Approximation theory and orthogonal polynomials form an essential part of mathematical analysis in the sense that (i) they provide theoretical foundations for real life applications of various results in "pure" mathematics, and that (ii) they yield a natural bridge between theory and practice. The extraordinary usefulness of orthogonal polynomials stems from the facts that among others (i) they are easily computable by a stable three term recursion formula, (ii) they are a natural medium for expanding "general" functions into well behaved series, and that (iii) their zeros are especially suitable for interplation and quadrature processes. Quadrature processes enable one to evaluate very complicated expressions involving integrals with high degree of precision. The primary subject of this proposal, that is, extensions of Szego's theory of orthogonal polynomials, is especially useful for theses purposes. The proposer hopes to find efficient methods with solid theoretical foundations.
neai计划继续他在逼近理论、正交多项式和相关分析领域的研究,涉及各种极值问题、普通和广义多项式不等式、差分和微分方程、实数、复数和矩阵值Jacobi、Hessenberg和带状矩阵的谱理论、Toeplitz和Hankel形式以及Hilbert空间算子。此外,他将继续在Mathematica中的“正交多项式”软件项目和正交多项式的数值方面工作。他的主要研究重点将集中在三个领域:单位圆上的正交多项式和单位圆上的弧,广义多项式和多项式不等式,线性差分方程及其解的增长。近似理论和正交多项式构成了数学分析的重要组成部分,因为(i)它们为“纯粹”数学中各种结果的实际应用提供了理论基础,(ii)它们在理论和实践之间架起了一座天然的桥梁。正交多项式的非凡用途源于以下事实:(i)它们很容易通过稳定的三项递推公式计算,(ii)它们是将“一般”函数扩展为表现良好的级数的自然介质,以及(iii)它们的零点特别适合于解释和正交过程。正交过程使人们能够以高精度计算涉及积分的非常复杂的表达式。这一建议的主要主题,即Szego的正交多项式理论的扩展,对这些目的特别有用。希望能找到具有坚实理论基础的有效方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Nevai其他文献
Discrete entropy of generalized Jacobi polynomials
- DOI:
10.1016/j.jmaa.2015.05.062 - 发表时间:
2015-11-01 - 期刊:
- 影响因子:
- 作者:
Andrei Martínez-Finkelshtein;Paul Nevai;Ana Peña - 通讯作者:
Ana Peña
Inequalities for generalized nonnegative polynomials
- DOI:
10.1007/bf01238273 - 发表时间:
1992-06-01 - 期刊:
- 影响因子:1.200
- 作者:
Tamás Erdélyi;Attila Máté;Paul Nevai - 通讯作者:
Paul Nevai
Extensions of Szegö's theory of orthogonal polynomials, II
- DOI:
10.1007/bf01890553 - 发表时间:
1987-12-01 - 期刊:
- 影响因子:1.200
- 作者:
Attila Máté;Paul Nevai;Vilmos Totik - 通讯作者:
Vilmos Totik
The Bernstein inequality and the Schur inequality are equivalent
- DOI:
10.1016/j.jat.2014.02.006 - 发表时间:
2014-06-01 - 期刊:
- 影响因子:
- 作者:
Paul Nevai; The Anonymous Referee - 通讯作者:
The Anonymous Referee
Weighted polynomial inequalities
- DOI:
10.1007/bf01893420 - 发表时间:
1986-12-01 - 期刊:
- 影响因子:1.200
- 作者:
Paul Nevai;Vilmos Totik - 通讯作者:
Vilmos Totik
Paul Nevai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Nevai', 18)}}的其他基金
Mathematical Sciences: Studies in Approximation Theory and Orthogonal Polynomials
数学科学:近似论和正交多项式研究
- 批准号:
9400577 - 财政年份:1994
- 资助金额:
$ 12.6万 - 项目类别:
Continuing grant
Mathematical Sciences: Studies in Approximation Theory and Orthogonal Polynomials
数学科学:近似论和正交多项式研究
- 批准号:
9024901 - 财政年份:1991
- 资助金额:
$ 12.6万 - 项目类别:
Continuing grant
Mathematical Sciences: Orthogonal Polynomials and Their Applications
数学科学:正交多项式及其应用
- 批准号:
8814488 - 财政年份:1988
- 资助金额:
$ 12.6万 - 项目类别:
Continuing grant
Mathematical Sciences: Conference on Orthogonal Polynomials and Their Applications
数学科学:正交多项式及其应用会议
- 批准号:
8816240 - 财政年份:1988
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Investigations in the Theory of Orthogonal Polynomials
数学科学:正交多项式理论研究
- 批准号:
8419525 - 财政年份:1985
- 资助金额:
$ 12.6万 - 项目类别:
Continuing grant
Mathematical Sciences: Orthogonal Polynomials and Interpolation
数学科学:正交多项式和插值
- 批准号:
8300882 - 财政年份:1983
- 资助金额:
$ 12.6万 - 项目类别:
Continuing grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
The National Alliance for Doctoral Studies in the Mathematical Sciences: Infrastructure
全国数学科学博士研究联盟:基础设施
- 批准号:
1242941 - 财政年份:2012
- 资助金额:
$ 12.6万 - 项目类别:
Continuing Grant
Studies on Noncausal Problems in Mathematical Sciences
数学科学中的非因果问题研究
- 批准号:
19540153 - 财政年份:2007
- 资助金额:
$ 12.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: Studies of Negatively Curved Groups
数学科学:负曲群的研究
- 批准号:
9704043 - 财政年份:1997
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Mathematical and Experimental Studies of Blood Flow in Collapsible Carotid Arteries with Stenoses
数学科学:狭窄颈动脉塌陷血流的数学和实验研究
- 批准号:
9505685 - 财政年份:1996
- 资助金额:
$ 12.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Studies in Algebraic Geometry
数学科学:代数几何研究
- 批准号:
9623041 - 财政年份:1996
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Studies in Continuum Mechanics and Materials Sciences
数学科学:连续介质力学和材料科学研究
- 批准号:
9531221 - 财政年份:1996
- 资助金额:
$ 12.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Applied Mathematics Workshop for Materials Studies and Industrial Applications
数学科学:材料研究和工业应用的应用数学研讨会
- 批准号:
9629956 - 财政年份:1996
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Studies in Stochastic Adaptive Control
数学科学:随机自适应控制研究
- 批准号:
9623439 - 财政年份:1996
- 资助金额:
$ 12.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Studies in Brownian Motion and Random Walk
数学科学:布朗运动和随机游走的研究
- 批准号:
9626642 - 财政年份:1996
- 资助金额:
$ 12.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Studies in Quantization Theory
数学科学:量子化理论研究
- 批准号:
9623083 - 财政年份:1996
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant