Mathematical Sciences: A Common Framework for Curve Evolution and Image Segmentation

数学科学:曲线演化和图像分割的通用框架

基本信息

  • 批准号:
    9531293
  • 负责人:
  • 金额:
    $ 6.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1996
  • 资助国家:
    美国
  • 起止时间:
    1996-08-01 至 2000-07-31
  • 项目状态:
    已结题

项目摘要

9531293 Shah In recent years, curve evolution has developed into an important tool in Computer Vision and has been applied to a wide variety of problems such as smoothing of shapes, shape analysis and shape recovery. The underlying principle is the evolution of a simple closed curve whose points move in the direction of the normal with a prescribed velocity. A fundamental limitation of the method as it stands is that it cannot deal with important image features such as triple points. The method also requires a choice of an "edge-strength" function, defined over the image domain, indicating the likelihood of an object boundary being present at any point in the image domain. This implies a separate preprocessing step that is in essence precomputing approximate boundaries in the presence of noise. The initial curve also has to be preselected. The investigator demonstrates that the different versions of curve evolution used in Computer Vision together with the preprocessing step and the choice of the initial curve can be integrated in the form of a new segmentation functional that unifies and extends curve evolution models. Moreover, the numerical solutions obtained retain sharp discontinuities or "shocks," thus providing sharp demarcation of object boundaries. The new functional described provides a unified approach to the segmentation problem and shape analysis. The principal objective of the proposed research is to carry out a mathematical analysis of the new functional, apply it to real images, and study its possible extensions. This project is in the field of machine vision, with applications especially in medical imaging. The underlying mathematical theory proposed here is potentially applicable also to seemingly unrelated fields such as liquid crystal technology, metallurgy, flame propagation and combustion. A computer receives visual information through a camera in the form of millions of numbers per picture frame, each number describing th e intensity and the color of light at a point in the scene. The sheer volume of the visual information makes the task of its interpretation by the computer extremely difficult. The first processing task for the computer before it can begin to recognize an object in a scene is to find the object's outline. This is what is called the segmentation problem. The fundamental difficulty here is how to separate the object's outline from the rest of a cluttered scene. Even when the computer has successfully located the object outline, it is difficult to identify the object because its appearance changes depending on its orientation as the object and the camera move. Worse, the object might be partially obscured. Therefore, characteristic features that distinguish one object from another and that remain unchanged as the appearance of the object changes must be defined and calculated. This is the problem of shape analysis. This project formulates a new unified approach to the fundamental mathematical questions underlying the two problems. It develops new mathematical tools based upon this approach and applies them to specific classes of practical problems, in particular to analysis of biomedical images.
小行星9531293 近年来,曲线演化已发展成为计算机视觉中的一个重要工具,并已被应用于各种各样的问题,如形状的平滑,形状分析和形状恢复。 其基本原理是一个简单的封闭曲线的发展,其点以规定的速度在法线方向上移动。 该方法的一个基本限制是它不能处理重要的图像特征,如三重点。 该方法还需要选择在图像域上定义的“边缘强度”函数,指示对象边界存在于图像域中的任何点处的可能性。 这意味着一个单独的预处理步骤,本质上是在存在噪声的情况下预先计算近似边界。 初始曲线也必须预先选定。 研究人员证明,在计算机视觉中使用的不同版本的曲线演化与预处理步骤和初始曲线的选择可以集成在一个新的分割功能,统一和扩展曲线演化模型的形式。 此外,获得的数值解保留了尖锐的不连续性或“冲击”,从而提供了对象边界的尖锐分界。 新的功能描述提供了一个统一的方法分割问题和形状分析。 建议的研究的主要目标是进行数学分析的新功能,将其应用到真实的图像,并研究其可能的扩展。 该项目属于机器视觉领域,特别是在医学成像方面的应用。 这里提出的基本数学理论也可能适用于看似无关的领域,如液晶技术,冶金,火焰传播和燃烧。 计算机通过照相机接收每帧图像中数以百万计的数字形式的视觉信息,每个数字描述场景中某一点的光的强度和颜色。 视觉信息的绝对数量使得计算机对其进行解释的任务极其困难。 计算机在开始识别场景中的对象之前的第一个处理任务是找到对象的轮廓。 这就是所谓的分割问题。 这里的基本困难是如何将对象的轮廓从杂乱的场景中分离出来。 即使当计算机已经成功地定位对象轮廓时,也很难识别对象,因为随着对象和相机的移动,对象的外观会根据其方向而变化。 更糟糕的是,物体可能会被部分遮挡。 因此,必须定义和计算将一个对象与另一个对象区分开并且在对象的外观改变时保持不变的特征。 这就是形状分析的问题。 该项目制定了一个新的统一的方法来解决这两个问题的基础数学问题。 它基于这种方法开发了新的数学工具,并将其应用于特定类别的实际问题,特别是生物医学图像的分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Studentship

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

REU Site: Bigelow Laboratory for Ocean Sciences - Undergraduate Research Experience in the Gulf of Maine and the World Ocean
REU 站点:毕格罗海洋科学实验室 - 缅因湾和世界海洋的本科生研究经验
  • 批准号:
    2349230
  • 财政年份:
    2024
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Continuing Grant
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
  • 批准号:
    2330043
  • 财政年份:
    2024
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Cooperative Agreement
Amalgamating Evidence About Causes: Medicine, the Medical Sciences, and Beyond
合并有关原因的证据:医学、医学科学及其他领域
  • 批准号:
    AH/Y007654/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Research Grant
International Centre for Mathematical Sciences 2024
国际数学科学中心 2024
  • 批准号:
    EP/Z000467/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Research Grant
Isaac Newton Institute for Mathematical Sciences (INI)
艾萨克·牛顿数学科学研究所 (INI)
  • 批准号:
    EP/Z000580/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Research Grant
ICE-TI: A Decolonized Approach to an AAS in Social and Behavioral Sciences
ICE-TI:社会和行为科学中 AAS 的非殖民化方法
  • 批准号:
    2326751
  • 财政年份:
    2024
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317573
  • 财政年份:
    2024
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Continuing Grant
Doctoral Dissertation Research: A Syndrome of Care: The New Sciences of Survivorship at the Frontier of Medical Rescue
博士论文研究:护理综合症:医疗救援前沿的生存新科学
  • 批准号:
    2341900
  • 财政年份:
    2024
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Standard Grant
Conference: Emerging Statistical and Quantitative Issues in Genomic Research in Health Sciences
会议:健康科学基因组研究中新出现的统计和定量问题
  • 批准号:
    2342821
  • 财政年份:
    2024
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Standard Grant
Meta-analysis for environmental sciences
环境科学荟萃分析
  • 批准号:
    NE/Y003721/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了