Mathematical Sciences: Branching Rules for Symmetric Groups and Hecke Algebras via Algebraic and Quantum Groups

数学科学:通过代数和量子群的对称群和赫克代数的分支规则

基本信息

  • 批准号:
    9600124
  • 负责人:
  • 金额:
    $ 6.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1996
  • 资助国家:
    美国
  • 起止时间:
    1996-06-15 至 1999-05-31
  • 项目状态:
    已结题

项目摘要

9600124 Kleshchev This grant supports the research of Professor A. Kleschev to work on problems in the modular representation of the finite groups. In particular he wants to find the mutiplicities of some composition factors of an irreducible representation of the symmetric group of order n. He also want to study branching rules for Hecke algebras via the theory of quantum groups and the study of irreducible representations of the alternating group and irreducible Specht modules. This is research in the field of group theory. Group theory can be thought of as the study of symmetry in the abstract. As such, this area has direct applications to many areas of physics and chemistry. Moreover, within the last 30 years, many connections to problems in data transmission have been solved using techniques from group theory. There are also direct connections to the error correcting codes that are vital for modern computing such as working with CD-ROM's.
9600124 Kleschev这笔经费用于支持A. Kleschev教授研究有限群的模表示问题。他特别想找到n阶对称群的不可约表示的一些组成因子的多重性。他还想通过量子群理论和交替群的不可约表示和不可约的Specht模的研究来研究Hecke代数的分支规则。这是群论领域的研究。群论可以被认为是对抽象对称性的研究。因此,这个领域对物理和化学的许多领域都有直接的应用。此外,在过去的30年里,许多与数据传输问题有关的问题已经用群论的技术解决了。还有与纠错码的直接联系,纠错码对现代计算至关重要,比如使用CD-ROM。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Kleshchev其他文献

Super invariant theory in positive characteristic
  • DOI:
    10.1007/s40879-023-00688-z
  • 发表时间:
    2023-10-09
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Kevin Coulembier;Pavel Etingof;Alexander Kleshchev;Victor Ostrik
  • 通讯作者:
    Victor Ostrik
Irina Dmitrievna Suprunenko (04.02.1954–10.08.2022)
伊琳娜·德米特里耶夫娜·苏普鲁年科 (04.02.1954–10.08.2022)
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Alexander Baranov;R. Guralnick;Alexander Kleshchev;Boris Plotkin;Eugene Plotkin;Alexander Premet;Gerhard Rörhle;Gary Seitz;Donna Testerman;P. Tiep;Nikolai Vavilov;Alexandre Zalesski;Efim Zelmanov
  • 通讯作者:
    Efim Zelmanov
On maximally symmetric subalgebras
  • DOI:
    10.1007/s00013-025-02132-y
  • 发表时间:
    2025-05-14
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Alexander Kleshchev
  • 通讯作者:
    Alexander Kleshchev

Alexander Kleshchev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Kleshchev', 18)}}的其他基金

Modular Representation Theory and Categorification with Applications
模块化表示理论及其分类及其应用
  • 批准号:
    2101791
  • 财政年份:
    2021
  • 资助金额:
    $ 6.69万
  • 项目类别:
    Standard Grant
Hidden Gradings in Representation Theory
表示论中的隐藏等级
  • 批准号:
    1161094
  • 财政年份:
    2012
  • 资助金额:
    $ 6.69万
  • 项目类别:
    Continuing Grant
Conference: Lie Algebraic Systems with Origins in Physics
会议:起源于物理学的李代数系统
  • 批准号:
    0852633
  • 财政年份:
    2009
  • 资助金额:
    $ 6.69万
  • 项目类别:
    Standard Grant
Groups and Representations Conference; March 25-27, 2004; Eugene, OR
团体和代表会议;
  • 批准号:
    0244651
  • 财政年份:
    2004
  • 资助金额:
    $ 6.69万
  • 项目类别:
    Standard Grant
Representations of Finite Groups and Algebraic Lie Theory
有限群的表示和代数李理论
  • 批准号:
    0139019
  • 财政年份:
    2002
  • 资助金额:
    $ 6.69万
  • 项目类别:
    Continuing Grant
Quantum Littlewood-Richarson Coefficients and Harish-Chandra Induction for Finite General Linear Groups
有限一般线性群的量子Littlewood-Richarson系数和Harish-Chandra归纳
  • 批准号:
    9900134
  • 财政年份:
    1999
  • 资助金额:
    $ 6.69万
  • 项目类别:
    Standard Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Amalgamating Evidence About Causes: Medicine, the Medical Sciences, and Beyond
合并有关原因的证据:医学、医学科学及其他领域
  • 批准号:
    AH/Y007654/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.69万
  • 项目类别:
    Research Grant
International Centre for Mathematical Sciences 2024
国际数学科学中心 2024
  • 批准号:
    EP/Z000467/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.69万
  • 项目类别:
    Research Grant
Isaac Newton Institute for Mathematical Sciences (INI)
艾萨克·牛顿数学科学研究所 (INI)
  • 批准号:
    EP/Z000580/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.69万
  • 项目类别:
    Research Grant
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
  • 批准号:
    2330043
  • 财政年份:
    2024
  • 资助金额:
    $ 6.69万
  • 项目类别:
    Cooperative Agreement
REU Site: Bigelow Laboratory for Ocean Sciences - Undergraduate Research Experience in the Gulf of Maine and the World Ocean
REU 站点:毕格罗海洋科学实验室 - 缅因湾和世界海洋的本科生研究经验
  • 批准号:
    2349230
  • 财政年份:
    2024
  • 资助金额:
    $ 6.69万
  • 项目类别:
    Continuing Grant
Doctoral Dissertation Research: A Syndrome of Care: The New Sciences of Survivorship at the Frontier of Medical Rescue
博士论文研究:护理综合症:医疗救援前沿的生存新科学
  • 批准号:
    2341900
  • 财政年份:
    2024
  • 资助金额:
    $ 6.69万
  • 项目类别:
    Standard Grant
Conference: Emerging Statistical and Quantitative Issues in Genomic Research in Health Sciences
会议:健康科学基因组研究中新出现的统计和定量问题
  • 批准号:
    2342821
  • 财政年份:
    2024
  • 资助金额:
    $ 6.69万
  • 项目类别:
    Standard Grant
ICE-TI: A Decolonized Approach to an AAS in Social and Behavioral Sciences
ICE-TI:社会和行为科学中 AAS 的非殖民化方法
  • 批准号:
    2326751
  • 财政年份:
    2024
  • 资助金额:
    $ 6.69万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317573
  • 财政年份:
    2024
  • 资助金额:
    $ 6.69万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317570
  • 财政年份:
    2024
  • 资助金额:
    $ 6.69万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了