Combinatorial Representation Theory: Constructive and Integral
组合表示理论:构造性和积分
基本信息
- 批准号:9622458
- 负责人:
- 金额:$ 6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-07-01 至 2000-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Liebler This award supports an investigation into a variety of detailed research programs, including cyclic and non-abelian difference sets, Williamson matrices, finite geometries from special p-groups, cyclotomic association schemes and integral Hecke algebras. Although each is of substantial interest in its own right, further study of each of these topics will also contribute to the broader goal of development of an integral representation theory for association scheme-like structures that can be used constructively. This investigation is computation-intensive, relying heavily on the high-level computer software packages. This award also supports guest speakers at an interstate Algebraic Combinatorics Seminar. The biweekly seminar benefits students and faculty from universities along the front range of Colorado and Wyoming. This research is in the general area of Combinatorics. One of the goals of Combinatorics is to find efficient methods of studying how discrete collections of objects can be arranged. The behavior of discrete systems is extremely important to modern communications. For example, the design of large networks, such as those occurring in telephone systems, and the design of algorithms in computer science deal with discrete sets of objects, and this makes use of combinatorial research. The broad goal of this research is to narrow the gap between the known examples and theoretical limits on certain types of highly symmetric discrete systems.
利布莱尔 该奖项支持对各种详细的研究计划进行调查,包括循环和非阿贝尔差集,威廉姆森矩阵,特殊p群的有限几何,分圆关联计划和积分Hecke代数。虽然每一个都是实质性的利益,在其本身的权利,进一步研究这些主题中的每一个也将有助于更广泛的目标,发展一个完整的表示理论的关联图式结构,可以建设性地使用。这项调查是计算密集型的,严重依赖于高级计算机软件包。该奖项还支持州际代数组合学研讨会的客座演讲者。每两周一次的研讨会使科罗拉多和怀俄明州前线沿着大学的学生和教师受益。 这项研究是在组合数学的一般领域。组合数学的目标之一是找到有效的方法来研究如何安排对象的离散集合。 离散系统的行为对现代通信极为重要。例如,大型网络的设计,如电话系统中出现的网络,以及 计算机科学中的算法处理对象的离散集合,这就利用了组合研究。广大 这项研究的目的是缩小已知的 某些类型的高度 对称离散系统
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Liebler其他文献
Corruption and Representations of Scholarly Output
- DOI:
10.1007/s10805-009-9071-6 - 发表时间:
2009-03-31 - 期刊:
- 影响因子:3.300
- 作者:
Robert Liebler - 通讯作者:
Robert Liebler
Action and Ethics Education
- DOI:
10.1007/s10805-010-9114-z - 发表时间:
2010-09-14 - 期刊:
- 影响因子:3.300
- 作者:
Robert Liebler - 通讯作者:
Robert Liebler
Student Perceptions of Faculty Use of Cheating Deterrents
- DOI:
10.1007/s10805-012-9170-7 - 发表时间:
2012-10-02 - 期刊:
- 影响因子:3.300
- 作者:
Robert Liebler - 通讯作者:
Robert Liebler
Robert Liebler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Liebler', 18)}}的其他基金
Funding for a Conference on: Finite Geometries, Groups and Computation
资助有限几何、群和计算会议
- 批准号:
0400571 - 财政年份:2004
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Representation Theoretic Combinatorics: Constructive and Integral
表示理论组合学:构造性和积分
- 批准号:
0070609 - 财政年份:2000
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Binary Codes, Group Representations and Related Fields
二进制代码、组表示及相关领域
- 批准号:
7701976 - 财政年份:1977
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
相似海外基金
Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
- 批准号:
2348843 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Combinatorial structures appearing in representation theory of quantum symmetric subalgebras, and their applications
量子对称子代数表示论中出现的组合结构及其应用
- 批准号:
22KJ2603 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: Hessenberg Varieties, Symmetric Functions, and Combinatorial Representation Theory
职业:Hessenberg 簇、对称函数和组合表示论
- 批准号:
2237057 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
LEAPS-MPS: The representation theory of combinatorial categories
LEAPS-MPS:组合类别的表示理论
- 批准号:
2400460 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Analytic and combinatorial aspects of representation theory
表示论的分析和组合方面
- 批准号:
RGPIN-2018-04044 - 财政年份:2022
- 资助金额:
$ 6万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial Representation Theory: Discovering the Interfaces of Algebra with Geometry and Topology
组合表示理论:发现代数与几何和拓扑的接口
- 批准号:
EP/W007509/1 - 财政年份:2022
- 资助金额:
$ 6万 - 项目类别:
Research Grant
LEAPS-MPS: The representation theory of combinatorial categories
LEAPS-MPS:组合类别的表示理论
- 批准号:
2137628 - 财政年份:2021
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Analytic and combinatorial aspects of representation theory
表示论的分析和组合方面
- 批准号:
RGPIN-2018-04044 - 财政年份:2021
- 资助金额:
$ 6万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




