Mathematical Sciences: "CAREER Program: Peter Smereka
数学科学:“职业计划:Peter Smereka
基本信息
- 批准号:9625190
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-06-01 至 2001-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Smereka The investigator undertakes a program of research and education under a Career grant. Efforts are directed toward the study of bubbly fluids. A goal is to develop effective equations for such fluids. The first step is to derive the equations of motion for a finite collection of interacting bubbles. The behavior for an infinite number of bubbles is deduced from kinetic theory, which gives rise to a kinetic equation that is a coarse-grained description of the mixture. This procedure has been implemented to derive two sets of effective equations that describe concentration and sound waves in an ideal bubbly flow. In both situations it is observed that the spatially homogeneous solution may be unstable. In the first case the instability results in the bubbles clustering and in the later case it indicates the bubble oscillations will synchronize to each other. A damping mechanism similar to Landau damping is found in the stable case. This is connected to the spectral theory of linear operators with a continuous spectrum and has no finite-dimensional analogue. The investigator extends this work to investigate the interaction of acoustic modes with convective modes. The theory will also be broadened to include the effects of gravity, liquid viscosity and bubble size distribution. With a view towards a more general theory of bubbly flow, the investigator examines the effects of a small, slowing varying vorticity field on an ideal bubbly flow. It is anticipated that the studies will be performed in collaboration with a graduate student. In addition to its relevance to engineering problems, this project contains substantial educational aspects. The student will be exposed to fluid mechanics, potential theory, Hamiltonian mechanics, kinetic theory, spectral theory of linear operators, and numerical methods. A new graduate level mathematics class is also developed on the numerical solution of interface problems with level sets. The advantage of this approach is that it handles topology changes naturally and easily. This class is expected to attract not only mathematics students but science and engineering students as well, because interface problems have wide-spread interest. An important emphasis of this project is to further enhance the applied mathematics program in the mathematics department at the University of Michigan and promote education at the interface between mathematics and engineering. One aspect of this project is to develop effective equations for bubbly fluids. A bubbly fluid is a dispersion of gas bubbles in a liquid and can be found in a variety natural and industrial settings. The effective equations will give a bulk or coarse-grained description of this mixture. At the present time computer resources do not exist to numerically simulate directly a bubbly fluid. For this reason considerable effort has been made in the development of models for bubbly fluids. The other aspect of the project is to incorporate applications of mathematics in a significant portion of mathematics classes. At the undergraduate level, the investigator plans to develop an enriched calculus course that focuses on applications for engineering students. The investigator plans to continue redesigning a senior level partial differential equations class to include more physics, applications, and computer-related assignments.
什梅雷卡 研究者根据职业补助金开展研究和教育计划。 人们致力于对气泡流体的研究。 一个目标是为这种流体开发有效的方程。 第一步是推导有限个相互作用的气泡的运动方程。 从动力学理论推导出无限数量的气泡的行为,这产生了一个动力学方程,这是一个粗粒度的描述的混合物。 这一过程已被实施,以获得两套有效的方程,描述浓度和声波在一个理想的泡状流。 在这两种情况下,它是观察到的空间均匀的解决方案可能是不稳定的。 在第一种情况下,不稳定性导致气泡聚集,在后一种情况下,它表明气泡振荡将彼此同步。 在稳定的情况下,一个类似的朗道阻尼阻尼机制。 这与具有连续谱的线性算子的谱理论有关,并且没有有限维的类似物。 调查员扩展这项工作,调查声学模式与对流模式的相互作用。 该理论也将扩大到包括重力,液体粘度和气泡尺寸分布的影响。 随着对一个更一般的泡状流理论的看法,调查员检查一个小的,缓慢变化的涡度场对一个理想的泡状流的影响。 预计这些研究将与一名研究生合作进行。 除了与工程问题相关外,该项目还包含大量的教育方面。 学生将接触到流体力学,势理论,哈密顿力学,动力学理论,线性算子的谱理论和数值方法。 一个新的研究生水平的数学类也开发的数值解的接口问题的水平集。 这种方法的优点是可以自然、轻松地处理拓扑变化。 这门课不仅吸引了数学系的学生,也吸引了理工科的学生,因为界面问题有着广泛的兴趣。 该项目的一个重要重点是进一步加强密歇根大学数学系的应用数学课程,促进数学与工程之间的接口教育。 这个项目的一个方面是开发有效的方程的气泡流体。 气泡流体是气泡在液体中的分散体,可以在各种自然和工业环境中找到。 有效的方程将给出这种混合物的大量或粗粒度的描述。 目前还没有计算机资源来直接数值模拟气泡流体。 由于这个原因,在气泡流体模型的开发方面已经做出了相当大的努力。 该项目的另一个方面是将数学应用纳入数学课程的重要部分。 在本科阶段,研究人员计划开发一个丰富的微积分课程,侧重于工程专业学生的应用。 研究人员计划继续重新设计一个高级偏微分方程类,包括更多的物理,应用和计算机相关的作业。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Smereka其他文献
Wetting of elastic solid on nanopillars
纳米柱上弹性固体的润湿
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:8.6
- 作者:
Maxim Ignasco;Yukio Saito;Peter Smereka;and Olivier Pierre-Louis - 通讯作者:
and Olivier Pierre-Louis
Peter Smereka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Smereka', 18)}}的其他基金
Computation of the Semiclassical Limit of Schroedinger's Equation, Anisotropic Grain Growth, and Epitaxial Growth Using Kinetic Monte Carlo
使用动力学蒙特卡罗计算薛定谔方程的半经典极限、各向异性晶粒生长和外延生长
- 批准号:
1115252 - 财政年份:2011
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Modeling and Computation of Crystalline Nanostructures
FRG:合作研究:晶体纳米结构的建模和计算
- 批准号:
0854870 - 财政年份:2009
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Computational Methods for Heteroepitaxial Growth, Grain Boundary Motion, and High Frequency Wave Propagation
异质外延生长、晶界运动和高频波传播的计算方法
- 批准号:
0810113 - 财政年份:2008
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Efficient Computation of Epitaxial Growth
外延生长的高效计算
- 批准号:
0509124 - 财政年份:2005
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Computational Methods for Problems in Material Science
材料科学问题的计算方法
- 批准号:
0207402 - 财政年份:2002
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
9007329 - 财政年份:1990
- 资助金额:
$ 20万 - 项目类别:
Fellowship Award
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Family of Origin, Geographic Constraints, and Career Intentions of Graduate Students in the Sciences
理科研究生的原生家庭、地理限制和职业意向
- 批准号:
2344563 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: How Does Core Scientific Knowledge Advance? Understanding Team Innovation at the Foundations of Sciences
职业:核心科学知识如何进步?
- 批准号:
2239418 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CAREER: When Two Worlds Collide: An Intersectional Analysis of Black Women's Role Strain and Adaptation in Computing Sciences
职业:当两个世界碰撞时:黑人女性在计算科学中的角色压力和适应的交叉分析
- 批准号:
2239021 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Enhancing Disciplinary Learning to Diversify Biology Degree Pathways and Career Pursuits in the Ecological and Evolutionary Sciences
加强学科学习,使生态和进化科学领域的生物学学位途径和职业追求多样化
- 批准号:
2318346 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Excellence in Research: Improving the Empirical, Analytical, and Data Archiving Skills of Early-Career Researchers in Criminal Justice and the Allied Social Sciences
卓越的研究:提高刑事司法和相关社会科学领域早期职业研究人员的实证、分析和数据归档技能
- 批准号:
2302108 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Early Career Development of Clinician-scientists in Otolaryngology and the Communication Sciences
耳鼻喉科和传播科学领域临床科学家的早期职业发展
- 批准号:
10753705 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Collaborative Research: Linguistic Production, Perception, and Identity in the Career Mobility of Black Faculty in Linguistics and the Language Sciences
合作研究:语言学和语言科学领域黑人教师职业流动性中的语言生产、感知和身份
- 批准号:
2126405 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Utilization of Unique Atomic and Nuclear Properties of Gadolinium in Nuclear and Radiological Sciences
职业:在核和放射科学中利用钆独特的原子和核特性
- 批准号:
2144226 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CAREER: An Investigation of Microplastics Fate and Contaminant Transport in Storm Runoff, The Nexus of Environmental Engineering and Material Sciences
职业:风暴径流中微塑料的归宿和污染物输送的研究,环境工程和材料科学的联系
- 批准号:
2305189 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
R11-BEC: Mitigating COVID-19 Career Challenges with Research and Professional Development Training for Undergraduate Students and Mentors in Field-based Environmental Sciences
R11-BEC:通过针对现场环境科学本科生和导师的研究和专业发展培训来缓解 COVID-19 职业挑战
- 批准号:
2225863 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant














{{item.name}}会员




