Computation of the Semiclassical Limit of Schroedinger's Equation, Anisotropic Grain Growth, and Epitaxial Growth Using Kinetic Monte Carlo
使用动力学蒙特卡罗计算薛定谔方程的半经典极限、各向异性晶粒生长和外延生长
基本信息
- 批准号:1115252
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-15 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal involves three projects where each one builds from prior NSF support. This first project involves the simulation of grain boundary motion in two and three dimensions using our recently developed multiphase variational level set framework. It is planned to extend this formulation to allow for the possibility of arbitrary surface tension between grains. This will be accomplished by combining this formulation with minimizing movements. The second project concerns the efficient computation the semi-classical limit of the Schroedinger equation. The proposed algorithm is based on the observation that if one transforms the Schroedinger equation using a transformation inspired by Gaussian wave packets, one arrives at another Schroedinger equation that is much more amenable to computation in the semiclassical limit project. The third project concerns modeling and efficient simulation of epitaxial growth using kinetic Monte Carlo (KMC). We plan to model and simulate both liquid drop epitaxy and heteroepitaxial growth. In each of these cases we aim to develop highly efficient KMC algorithms to allow simulation on time and lengths not previously possible, thereby facilitating model development and allowing comparison with experiments.Each of the proposed projects has the potential to have a significant impact on problems that are both fundamental and technologically important. Epitaxial growth is scientifically interesting since it has effects on both nanoscales and mesoscales. It is technologically relevant since quantum dot materials are made in this way. Our proposed techniques will greatly increase the simulation speed thereby facilitating model development. The study of grain boundary motion using curvature flow is a classic problem in applied and computational mathematics which has importance in material science since various properties of polycrystalline substances can crucially depend on the details of the grain patterns. The fast simulation of the semi-classical limit of the Schroedinger equation could provide deeper insight into chemical reaction dynamics, molecular-surface scattering, and photodissociation, for example.
该提案涉及三个项目,每个项目都是在先前NSF支持的基础上构建的。这第一个项目涉及到模拟晶界运动在二维和三维使用我们最近开发的多相变分水平集框架。计划扩展该配方以允许颗粒之间任意表面张力的可能性。这将通过将该配方与最小化运动相结合来实现。第二个项目是关于薛定谔方程半经典极限的有效计算。所提出的算法是基于这样的观察,如果一个转换的薛定谔方程的启发高斯波包的变换,一个到达另一个薛定谔方程,这是更适合于计算的半经典极限项目。第三个项目涉及使用动力学蒙特卡罗(KMC)的外延生长建模和有效的模拟。 我们计划对液滴外延和异质外延生长进行建模和模拟。在每一种情况下,我们的目标是开发高效的KMC算法,使模拟的时间和长度上以前不可能的,从而促进模型的开发,并允许与experiments.Each提出的项目有可能产生重大影响的问题,是根本性的和技术上的重要性。外延生长在科学上是有趣的,因为它对纳米尺度和中尺度都有影响。 这在技术上是相关的,因为量子点材料是以这种方式制成的。 我们提出的技术将大大提高模拟速度,从而促进模型的开发。利用曲率流研究晶界运动是应用数学和计算数学中的经典问题,它在材料科学中具有重要意义,因为多晶物质的各种性质可以关键地依赖于晶粒图案的细节。 薛定谔方程的半经典极限的快速模拟可以为化学反应动力学、分子表面散射和光解离等提供更深入的了解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Smereka其他文献
Wetting of elastic solid on nanopillars
纳米柱上弹性固体的润湿
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:8.6
- 作者:
Maxim Ignasco;Yukio Saito;Peter Smereka;and Olivier Pierre-Louis - 通讯作者:
and Olivier Pierre-Louis
Peter Smereka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Smereka', 18)}}的其他基金
FRG: Collaborative Research: Modeling and Computation of Crystalline Nanostructures
FRG:合作研究:晶体纳米结构的建模和计算
- 批准号:
0854870 - 财政年份:2009
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Computational Methods for Heteroepitaxial Growth, Grain Boundary Motion, and High Frequency Wave Propagation
异质外延生长、晶界运动和高频波传播的计算方法
- 批准号:
0810113 - 财政年份:2008
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Efficient Computation of Epitaxial Growth
外延生长的高效计算
- 批准号:
0509124 - 财政年份:2005
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Computational Methods for Problems in Material Science
材料科学问题的计算方法
- 批准号:
0207402 - 财政年份:2002
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Mathematical Sciences: "CAREER Program: Peter Smereka
数学科学:“职业计划:Peter Smereka
- 批准号:
9625190 - 财政年份:1996
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
9007329 - 财政年份:1990
- 资助金额:
$ 15万 - 项目类别:
Fellowship Award
相似海外基金
Mixed Quantum-Classical Semiclassical Theory: Finding Reaction Paths in Open Quantum Systems
混合量子经典半经典理论:寻找开放量子系统中的反应路径
- 批准号:
2404809 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Quantum Vibrational Spectra of Hydrogen in Materials by Ab Initio Semiclassical Molecular Dynamics
利用从头算半经典分子动力学研究材料中氢的量子振动光谱
- 批准号:
23K04670 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Semiclassical distribution of quantum resonances and graph structure of classical trapped trajectories
量子共振的半经典分布和经典俘获轨迹的图结构
- 批准号:
22KJ2364 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Quantum energy inequalities and their implications in semiclassical gravity
量子能量不等式及其对半经典引力的影响
- 批准号:
2739374 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Studentship
Semiclassical theory of wave packet dynamics in curved spacetime and its application to nonlinear responses
弯曲时空波包动力学的半经典理论及其在非线性响应中的应用
- 批准号:
22K03498 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CDS&E: Fast Search of Growing High-Dimensional Big Data to Enable Accurate Semiclassical Molecular Dynamics Studies of Large Molecular Systems
CDS
- 批准号:
2103563 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Semiclassical analysis of Schroedinger equations
薛定谔方程的半经典分析
- 批准号:
21K03303 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spectral and scattering theory with microlocal and semiclassical methods
使用微局域和半经典方法的光谱和散射理论
- 批准号:
21K03276 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Semiclassical analysis of spectral and scattering problems arising from energy-level crossings
能级交叉引起的光谱和散射问题的半经典分析
- 批准号:
21K03282 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Semiclassical aspects of soliton dynamics
孤子动力学的半经典方面
- 批准号:
2271929 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Studentship














{{item.name}}会员




