The Congruence Subgroup Problem and Groups of Finite Representation Type
同余子群问题与有限表示型群
基本信息
- 批准号:9700474
- 负责人:
- 金额:$ 4.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-01 至 2000-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9700474 Rapinchuk This award provides funding for a continuing of the congruence subgroup problem for S-arithmetic subgroups of linear algebraic groups over number fields. The principal investigator will attempt to prove the centrality of the congruence kernel for some new classes of groups using a variety of techniques such as different boundedness conditions (bounded generation and similar properties), methods of representation theory (property (T) of Kazhdan), etc. He will also study the properties of groups having finite representation type and the representation varieties of some finitely generated groups. This research falls into the general mathematical field of Number Theory. Number Theory has its historical roots in the study of the whole numbers, addressing such questions as those dealing with the divisibility of one whole number by another. It is among the oldest branches of mathematics and was pursued for many centuries for purely aesthetic reasons. However, within the last half century it has become an indispensable tool in diverse applications in areas such as data transmission and processing, and communication systems.
这个奖项为数域上线性代数群的s -算术子群的同余子群问题的一个连续提供了资助。主要研究者将尝试使用不同有界条件(有界生成和相似性质)、表示理论方法(哈萨克丹性质(T))等各种技术来证明一些新类群的同余核的中心性。他还将研究有限表示型群的性质和一些有限生成群的表示变化。本研究属于数论的一般数学领域。数论的历史根源在于对整数的研究,解决的问题是一个整数能被另一个整数整除的问题。它是数学中最古老的分支之一,人们为了纯粹的美学原因而追求了许多世纪。然而,在过去的半个世纪里,它已经成为数据传输和处理以及通信系统等各种应用领域不可或缺的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrei Rapinchuk其他文献
Andrei Rapinchuk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrei Rapinchuk', 18)}}的其他基金
Conference on Arithmetic Geometry and Algebraic Groups
算术几何与代数群会议
- 批准号:
2305231 - 财政年份:2023
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant
Elliptic Curves, Torsors, and L-functions
椭圆曲线、Torsors 和 L 函数
- 批准号:
1660462 - 财政年份:2017
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant
Arithmetic and Zariski-dense subgroups in algebraic groups
代数群中的算术和 Zariski 密集子群
- 批准号:
1301800 - 财政年份:2013
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant
Arithmetic Groups, Their Applications and Generalizations
算术群、它们的应用和概括
- 批准号:
0965758 - 财政年份:2010
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant
SM: Arithmetic Groups and Their Applications in Combinatorics, Geometry and Topology
SM:算术群及其在组合学、几何和拓扑中的应用
- 批准号:
1034750 - 财政年份:2010
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant
Normal Subgroups of the Groups of Rational Points of Algebraic Groups, Congruence Subgroup Problem, and Related Topics
代数群有理点群的正规子群、同余子群问题及相关主题
- 批准号:
0502120 - 财政年份:2005
- 资助金额:
$ 4.99万 - 项目类别:
Continuing Grant
Normal Subgroup Structure of the Groups of Rational Points of Algebraic Groups and of Their Special Subgroups
代数群及其特殊子群有理点群的正规子群结构
- 批准号:
0138315 - 财政年份:2002
- 资助金额:
$ 4.99万 - 项目类别:
Continuing Grant
The Congruence Subgroups Problem and Groups of Finite Representation Type
同余子群问题和有限表示型群
- 批准号:
9970148 - 财政年份:1999
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant
相似国自然基金
山果蝇物种亚群(Drosophila montium species-subgroup)求偶行为及求偶歌进化及其相关基因研究
- 批准号:31372187
- 批准年份:2013
- 资助金额:78.0 万元
- 项目类别:面上项目
相似海外基金
Sleep and Cardiometabolic Subgroup Discovery and Risk Prediction in United States Adolescents and Young Adults: A Multi-Study Multi-Domain Analysis of NHANES and NSRR
美国青少年和年轻人的睡眠和心脏代谢亚组发现和风险预测:NHANES 和 NSRR 的多研究多领域分析
- 批准号:
10639360 - 财政年份:2023
- 资助金额:
$ 4.99万 - 项目类别:
A Study on Exact Optimal Solutions for Subgroup Identification Based on Discrete Structure Processing
基于离散结构处理的子群辨识精确最优解研究
- 批准号:
23K11023 - 财政年份:2023
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of a novel subgroup of anaplastic thyroid carcinoma by large-scale cohort and comprehensive genetic analysis
通过大规模队列和综合遗传分析阐明未分化甲状腺癌的新亚组
- 批准号:
23K14493 - 财政年份:2023
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Subgroup delineation in genetic epilepsies and developmental brain disorders
遗传性癫痫和发育性脑疾病的亚组划分
- 批准号:
10658750 - 财政年份:2023
- 资助金额:
$ 4.99万 - 项目类别:
Innovative precision medicine methods in subgroup identification for Alzheimer's disease
阿尔茨海默病亚组鉴定的创新精准医学方法
- 批准号:
10740649 - 财政年份:2023
- 资助金额:
$ 4.99万 - 项目类别:
Uncovering the Subgroup Structure of E8
揭示 E8 的子群结构
- 批准号:
EP/W005409/1 - 财政年份:2022
- 资助金额:
$ 4.99万 - 项目类别:
Research Grant
A novel approach for equitable characterization of gender and its use in exposing subgroup discrepancies in polygenic score associations
一种公平描述性别的新方法及其在揭示多基因评分关联中亚组差异中的应用
- 批准号:
10532075 - 财政年份:2022
- 资助金额:
$ 4.99万 - 项目类别:
A novel approach for equitable characterization of gender and its use in exposing subgroup discrepancies in polygenic score associations
一种公平描述性别的新方法及其在揭示多基因评分关联中亚组差异中的应用
- 批准号:
10710044 - 财政年份:2022
- 资助金额:
$ 4.99万 - 项目类别:
Subgroup Structure of certain Exceptional Finite Simple Groups
某些例外有限简单群的子群结构
- 批准号:
2617662 - 财政年份:2021
- 资助金额:
$ 4.99万 - 项目类别:
Studentship
CIF: Small: Foundations and Applications of Blind Subgroup Robustness
CIF:小:盲子群鲁棒性的基础和应用
- 批准号:
2120018 - 财政年份:2021
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant














{{item.name}}会员




