Arithmetic and Zariski-dense subgroups in algebraic groups

代数群中的算术和 Zariski 密集子群

基本信息

  • 批准号:
    1301800
  • 负责人:
  • 金额:
    $ 15.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-15 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

The project addresses several important problems in the investigation of arithmetic and general Zariski-dense subgroups of semisimple algebraic groups. One of the central themes in the project is the analysis of weakly commensurable Zariski-dense subgroups. The notion of weak commensurability was introduced earlier in a joint work of the PI and G. Prasad, and its analysis for arithmetic groups has led to a resolution of several problems in differential geometry dealing with length-commensurable and isospectral arithmetically defined locally symmetric spaces. In the current project, some finiteness results which were previously known only for arithmetic groups are expected to be generalized to arbitrary Zariski-dense subgroups. This work is likely to have interesting consequences for non-arithmetically defined locally symmetric spaces. It is also related to the problem in the theory of algebraic groups of to what extent an absolutely almost simple algebraic group over a field K is determined by the isomorphism classes of its maximal K-tori. This part of the project will build on the PI's recent results analyzing division algebras having the same maximal subfields. The PI also intends to continue the investigation of the congruence subgroup problem. Generally speaking, the project focuses on the analysis of a very broad class of matrix groups (Zariski-dense subgroups of semisimple algebraic groups) based on the information about the eigenvalues of their elements. This approach is fundamental in the representation theory of finite groups, but as was discovered by the PI and G. Prasad it can also be used to characterize many arithmetic groups (which are special groups whose elements are matrices with integer matrices). The goal of the project is to extend some of these results to groups much more general than arithmetic. This work has applications to the famous question ''Can one hear the shape of a drum?'' in the context of some special spaces called locally symmetric spaces.
该项目解决了几个重要的问题,在调查的算术和一般Zagliki稠密子群的半单代数群。 该项目的中心主题之一是分析弱可分解的Zagliki稠密子群。 在PI和G的联合工作中,较早地引入了弱可重复性的概念。Prasad和它对算术群的分析导致了微分几何中几个问题的解决,这些问题涉及可长度分解和等谱算术定义的局部对称空间。 在当前的项目中,一些有限性的结果,以前只知道算术群有望推广到任意Zurkiki稠密子群。 这项工作可能会有有趣的后果,非算术定义的局部对称空间。 它也与代数群理论中的问题有关,即域K上的绝对几乎单代数群在多大程度上由其最大K-环面的同构类决定。 这个项目的这一部分将建立在PI最近的结果分析师代数具有相同的最大子域。 PI还打算继续调查一致性子组问题。一般来说,该项目的重点是分析一类非常广泛的矩阵群(半单代数群的Zakirki稠密子群),基于有关其元素的特征值的信息。 这种方法是有限群表示论的基础,但正如PI和G。Prasad它也可以用来刻画许多算术群(这是特殊的群,其元素是具有整数矩阵的矩阵)。 该项目的目标是将其中一些结果扩展到比算术更一般的群体。 这项工作有应用到著名的问题“一个人能听到鼓的形状吗?在某些特殊空间的上下文中称为局部对称空间。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrei Rapinchuk其他文献

Andrei Rapinchuk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrei Rapinchuk', 18)}}的其他基金

Conference on Arithmetic Geometry and Algebraic Groups
算术几何与代数群会议
  • 批准号:
    2305231
  • 财政年份:
    2023
  • 资助金额:
    $ 15.3万
  • 项目类别:
    Standard Grant
Elliptic Curves, Torsors, and L-functions
椭圆曲线、Torsors 和 L 函数
  • 批准号:
    1660462
  • 财政年份:
    2017
  • 资助金额:
    $ 15.3万
  • 项目类别:
    Standard Grant
Arithmetic Groups, Their Applications and Generalizations
算术群、它们的应用和概括
  • 批准号:
    0965758
  • 财政年份:
    2010
  • 资助金额:
    $ 15.3万
  • 项目类别:
    Standard Grant
SM: Arithmetic Groups and Their Applications in Combinatorics, Geometry and Topology
SM:算术群及其在组合学、几何和拓扑中的应用
  • 批准号:
    1034750
  • 财政年份:
    2010
  • 资助金额:
    $ 15.3万
  • 项目类别:
    Standard Grant
Normal Subgroups of the Groups of Rational Points of Algebraic Groups, Congruence Subgroup Problem, and Related Topics
代数群有理点群的正规子群、同余子群问题及相关主题
  • 批准号:
    0502120
  • 财政年份:
    2005
  • 资助金额:
    $ 15.3万
  • 项目类别:
    Continuing Grant
Normal Subgroup Structure of the Groups of Rational Points of Algebraic Groups and of Their Special Subgroups
代数群及其特殊子群有理点群的正规子群结构
  • 批准号:
    0138315
  • 财政年份:
    2002
  • 资助金额:
    $ 15.3万
  • 项目类别:
    Continuing Grant
The Congruence Subgroups Problem and Groups of Finite Representation Type
同余子群问题和有限表示型群
  • 批准号:
    9970148
  • 财政年份:
    1999
  • 资助金额:
    $ 15.3万
  • 项目类别:
    Standard Grant
The Congruence Subgroup Problem and Groups of Finite Representation Type
同余子群问题与有限表示型群
  • 批准号:
    9700474
  • 财政年份:
    1997
  • 资助金额:
    $ 15.3万
  • 项目类别:
    Standard Grant

相似海外基金

Zariski稠密な例外集合を持つ曲面に対するManin予想の証明に向けて
证明具有 Zariski 稠密异常集的曲面的马宁猜想
  • 批准号:
    24KJ1234
  • 财政年份:
    2024
  • 资助金额:
    $ 15.3万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
The Makar-Limanov invariant and the Zariski cancellation problem
Makar-Limanov 不变量和 Zariski 取消问题
  • 批准号:
    465135-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 15.3万
  • 项目类别:
    University Undergraduate Student Research Awards
Zariski geometries
扎里斯基几何
  • 批准号:
    369565-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 15.3万
  • 项目类别:
    University Undergraduate Student Research Awards
Branched covers and Zariski pairs
分支盖和 Zariski 对
  • 批准号:
    19540043
  • 财政年份:
    2007
  • 资助金额:
    $ 15.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of the structure of the Markov-Zariski topology of a group and convergence properties of compact-like topological groups
群的Markov-Zariski拓扑结构及紧类拓扑群的收敛性研究
  • 批准号:
    19540092
  • 财政年份:
    2007
  • 资助金额:
    $ 15.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了