Elliptic Curves, Torsors, and L-functions

椭圆曲线、Torsors 和 L 函数

基本信息

  • 批准号:
    1660462
  • 负责人:
  • 金额:
    $ 1.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-01-15 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

The award provides funding to support participation of primarily junior researchers (postdocs and graduate students) in the meeting consisting of the workshop ``Elliptic Curves, Torsors and L-functions" and the lectures by B.H. Gross on the ranks of elliptic curves in the Distinguished Lecture Series ``Virginia Mathematics Lectures." The workshop and the lectures will take place March 24-29 at the University of Virginia. The lectures by Gross will include a survey of the Birch--Swinnerton-Dyer conjecture as well as very recent results on the average rank for all elliptic curves over the field of rational numbers and the arithmetic of hyperelliptic curves. The lectures in the workshop will complement Gross's lectures by expanding into related areas of arithmetic geometry and the arithmetic theory of algebraic groups. The meeting is sponsored in part by the Institute of Mathematical Sciences at the UVA Mathematics Department. The website is http://www.people.virginia.edu/~lww8k/workshop/workshop.html.The rank is the most important but least understood invariant of elliptic curves over Q. The recent work of M. Bhargava, B.H. Gross, B. Poonen and others on `average' ranks marked a breakthrough in the field by introducing the viewpoint of `arithmetic statistics'; that is, studying the distribution of such arithmetic invariants. The general methods of arithmetic statistics are applicable to many adjacent areas of arithmetic geometry. The objective of the planned workshop at UVA is precisely to cater to the intense interest in these methods from those working on related areas, by bringing together experts on this topic with both senior and junior researchers from adjacent areas of arithmetic geometry.
该奖项提供资金,以支持主要是初级研究人员(博士后和研究生)参加会议,包括研讨会“椭圆曲线,Torsors和L函数”和讲座由B.H.格罗斯在杰出系列讲座“弗吉尼亚数学讲座”中对椭圆曲线的排名。“研讨会和讲座将于3月24日至29日在弗吉尼亚大学举行。讲座格罗斯将包括一个调查的伯奇-Swinnerton-戴尔猜想以及最近的结果平均排名为所有椭圆曲线领域的有理数和算术的超椭圆曲线。在研讨会的讲座将补充格罗斯的讲座扩大到相关领域的算术几何和算术理论的代数群。会议部分由UVA数学系数学科学研究所赞助。该网站是http://www.people.virginia.edu/~lww8k/workshop/workshop.html.The排名是最重要的,但最不了解的椭圆曲线在Q上的不变量。M.巴尔加瓦恶心,B。Poonen和其他“平均”等级的人通过引入“算术不变量”的观点,即研究这种算术不变量的分布,标志着该领域的突破。算术统计的一般方法适用于算术几何的许多邻近领域。在弗吉尼亚大学计划的讲习班的目标正是为了满足这些方法的强烈兴趣,从那些工作在相关领域,通过汇集专家对这一主题的高级和初级研究人员从算术几何相邻领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrei Rapinchuk其他文献

Andrei Rapinchuk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrei Rapinchuk', 18)}}的其他基金

Conference on Arithmetic Geometry and Algebraic Groups
算术几何与代数群会议
  • 批准号:
    2305231
  • 财政年份:
    2023
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Arithmetic and Zariski-dense subgroups in algebraic groups
代数群中的算术和 Zariski 密集子群
  • 批准号:
    1301800
  • 财政年份:
    2013
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Arithmetic Groups, Their Applications and Generalizations
算术群、它们的应用和概括
  • 批准号:
    0965758
  • 财政年份:
    2010
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
SM: Arithmetic Groups and Their Applications in Combinatorics, Geometry and Topology
SM:算术群及其在组合学、几何和拓扑中的应用
  • 批准号:
    1034750
  • 财政年份:
    2010
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Normal Subgroups of the Groups of Rational Points of Algebraic Groups, Congruence Subgroup Problem, and Related Topics
代数群有理点群的正规子群、同余子群问题及相关主题
  • 批准号:
    0502120
  • 财政年份:
    2005
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Continuing Grant
Normal Subgroup Structure of the Groups of Rational Points of Algebraic Groups and of Their Special Subgroups
代数群及其特殊子群有理点群的正规子群结构
  • 批准号:
    0138315
  • 财政年份:
    2002
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Continuing Grant
The Congruence Subgroups Problem and Groups of Finite Representation Type
同余子群问题和有限表示型群
  • 批准号:
    9970148
  • 财政年份:
    1999
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
The Congruence Subgroup Problem and Groups of Finite Representation Type
同余子群问题与有限表示型群
  • 批准号:
    9700474
  • 财政年份:
    1997
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Quantifying Genetic and Ecological Constraints on the Evolution of Thermal Performance Curves
职业:量化热性能曲线演变的遗传和生态约束
  • 批准号:
    2337107
  • 财政年份:
    2024
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Continuing Grant
Euler Systems, Iwasawa Theory, and the Arithmetic of Elliptic Curves
欧拉系统、岩泽理论和椭圆曲线算术
  • 批准号:
    2401321
  • 财政年份:
    2024
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Continuing Grant
CAREER: Accelerating Algorithms for Computing Isogenies and Endomorphisms of Supersingular Elliptic Curves
职业:加速计算超奇异椭圆曲线同构和自同态的算法
  • 批准号:
    2340564
  • 财政年份:
    2024
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Continuing Grant
Combinatorics of Complex Curves and Surfaces
复杂曲线和曲面的组合
  • 批准号:
    2401104
  • 财政年份:
    2024
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
Super Quantum Curves and Super Voros Coefficients
超级量子曲线和超级 Voros 系数
  • 批准号:
    22KJ0715
  • 财政年份:
    2023
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Random curves and surfaces with conformal symmetries
具有共形对称性的随机曲线和曲面
  • 批准号:
    2246820
  • 财政年份:
    2023
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Continuing Grant
The embedded topology of projective plane curves and the generalization of splitting invariants
射影平面曲线的嵌入拓扑和分裂不变量的推广
  • 批准号:
    23K03042
  • 财政年份:
    2023
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
  • 批准号:
    23K12949
  • 财政年份:
    2023
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Diversified study on Manin's conjecture for rational points/rational curves/motives
马宁有理点/有理曲线/动机猜想的多元化研究
  • 批准号:
    23H01067
  • 财政年份:
    2023
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Conference: 1, 2, 3: Curves, Surfaces, and 3-Manifolds
会议:1,2,3:曲线、曲面和 3-流形
  • 批准号:
    2246832
  • 财政年份:
    2023
  • 资助金额:
    $ 1.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了