Normal Subgroup Structure of the Groups of Rational Points of Algebraic Groups and of Their Special Subgroups
代数群及其特殊子群有理点群的正规子群结构
基本信息
- 批准号:0138315
- 负责人:
- 金额:$ 12.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award provides funding for an investigation of the normal subgroupstructure of groups of rational points of algebraic groups overgeneral as well as over special (primarily, global) fields. Theprincipal investigator attempts to prove a new conjecture onsolvability of finite quotients of the groups of rational points ofsimple algebraic groups over arbitrary infinite fields.He also plans to analyze finite quotients of the multiplicative groupof a finite dimensional division algebra in order to obtain theirreasonable classification. Another central problem is investigationof the Margulis-Platonov conjecture for special unitary groups overglobal fields. The principal investigator collaborates on these problemswith Gopal Prasad, Yoav Segev and Gary Seitz. He also plans to workwith Gopal Prasad on a joint book project in the congruence subgroupproblem.Questions related to the normal subgroup structure of linear groupshave historical roots in the 19th century (Galois, Jordan, Dixon),and have been an area of active research in the 20th century. Recently,new techniques for analyzing this problem for anisotropic groupsover general fields have been discovered in the joint work of theprincipal investigator with Y.Segev and G.Seitz. These techniques enableone to investigate groups over general fields using methods of thetheory of valuations, which were previously used only in thenumber-theoretic setting of global fields. This approach fits intothe general area of investigation of the congruence subgroup problem,which is connected with other fundamental problems in number theory,currently applied in data transmission, data processing and communicationsystems.
该奖项提供资金的调查正常subgroupstructure群体的合理点的代数群体overgeneral以及在特殊(主要是全球)领域。主要研究者试图证明任意无限域上单代数群的有理点群的有限直积的可解性的一个新猜想,并计划分析有限维除代数的乘法群的有限直积,以得到它们的不合理分类。另一个中心问题是研究整体域上特殊酉群的Margulis-Platonov猜想。主要研究者与Gopal Prasad、Yoav Segev和加里塞茨合作研究这些问题。他还计划与Gopal Prasad合作开展一个关于同余子群问题的联合图书项目。与线性群的正规子群结构相关的问题历史根源于19世纪(伽罗瓦、乔丹、狄克逊),并且一直是一个活跃的研究领域在20世纪。最近,在首席研究员与Y.Segev和G. Seitz的联合工作中,发现了分析一般域上各向异性群的新技术。这些技术使leone研究群体一般领域使用的方法thetheory的估值,这是以前只使用在theber-theoretical设置的全球领域。这种方法适用于研究同余子群问题的一般领域,它与数论中的其他基本问题有关,目前应用于数据传输、数据处理和通信系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrei Rapinchuk其他文献
Andrei Rapinchuk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrei Rapinchuk', 18)}}的其他基金
Conference on Arithmetic Geometry and Algebraic Groups
算术几何与代数群会议
- 批准号:
2305231 - 财政年份:2023
- 资助金额:
$ 12.4万 - 项目类别:
Standard Grant
Elliptic Curves, Torsors, and L-functions
椭圆曲线、Torsors 和 L 函数
- 批准号:
1660462 - 财政年份:2017
- 资助金额:
$ 12.4万 - 项目类别:
Standard Grant
Arithmetic and Zariski-dense subgroups in algebraic groups
代数群中的算术和 Zariski 密集子群
- 批准号:
1301800 - 财政年份:2013
- 资助金额:
$ 12.4万 - 项目类别:
Standard Grant
Arithmetic Groups, Their Applications and Generalizations
算术群、它们的应用和概括
- 批准号:
0965758 - 财政年份:2010
- 资助金额:
$ 12.4万 - 项目类别:
Standard Grant
SM: Arithmetic Groups and Their Applications in Combinatorics, Geometry and Topology
SM:算术群及其在组合学、几何和拓扑中的应用
- 批准号:
1034750 - 财政年份:2010
- 资助金额:
$ 12.4万 - 项目类别:
Standard Grant
Normal Subgroups of the Groups of Rational Points of Algebraic Groups, Congruence Subgroup Problem, and Related Topics
代数群有理点群的正规子群、同余子群问题及相关主题
- 批准号:
0502120 - 财政年份:2005
- 资助金额:
$ 12.4万 - 项目类别:
Continuing Grant
The Congruence Subgroups Problem and Groups of Finite Representation Type
同余子群问题和有限表示型群
- 批准号:
9970148 - 财政年份:1999
- 资助金额:
$ 12.4万 - 项目类别:
Standard Grant
The Congruence Subgroup Problem and Groups of Finite Representation Type
同余子群问题与有限表示型群
- 批准号:
9700474 - 财政年份:1997
- 资助金额:
$ 12.4万 - 项目类别:
Standard Grant
相似国自然基金
山果蝇物种亚群(Drosophila montium species-subgroup)求偶行为及求偶歌进化及其相关基因研究
- 批准号:31372187
- 批准年份:2013
- 资助金额:78.0 万元
- 项目类别:面上项目
相似海外基金
Sleep and Cardiometabolic Subgroup Discovery and Risk Prediction in United States Adolescents and Young Adults: A Multi-Study Multi-Domain Analysis of NHANES and NSRR
美国青少年和年轻人的睡眠和心脏代谢亚组发现和风险预测:NHANES 和 NSRR 的多研究多领域分析
- 批准号:
10639360 - 财政年份:2023
- 资助金额:
$ 12.4万 - 项目类别:
A Study on Exact Optimal Solutions for Subgroup Identification Based on Discrete Structure Processing
基于离散结构处理的子群辨识精确最优解研究
- 批准号:
23K11023 - 财政年份:2023
- 资助金额:
$ 12.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of a novel subgroup of anaplastic thyroid carcinoma by large-scale cohort and comprehensive genetic analysis
通过大规模队列和综合遗传分析阐明未分化甲状腺癌的新亚组
- 批准号:
23K14493 - 财政年份:2023
- 资助金额:
$ 12.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Subgroup delineation in genetic epilepsies and developmental brain disorders
遗传性癫痫和发育性脑疾病的亚组划分
- 批准号:
10658750 - 财政年份:2023
- 资助金额:
$ 12.4万 - 项目类别:
Innovative precision medicine methods in subgroup identification for Alzheimer's disease
阿尔茨海默病亚组鉴定的创新精准医学方法
- 批准号:
10740649 - 财政年份:2023
- 资助金额:
$ 12.4万 - 项目类别:
Uncovering the Subgroup Structure of E8
揭示 E8 的子群结构
- 批准号:
EP/W005409/1 - 财政年份:2022
- 资助金额:
$ 12.4万 - 项目类别:
Research Grant
A novel approach for equitable characterization of gender and its use in exposing subgroup discrepancies in polygenic score associations
一种公平描述性别的新方法及其在揭示多基因评分关联中亚组差异中的应用
- 批准号:
10532075 - 财政年份:2022
- 资助金额:
$ 12.4万 - 项目类别:
A novel approach for equitable characterization of gender and its use in exposing subgroup discrepancies in polygenic score associations
一种公平描述性别的新方法及其在揭示多基因评分关联中亚组差异中的应用
- 批准号:
10710044 - 财政年份:2022
- 资助金额:
$ 12.4万 - 项目类别:
Subgroup Structure of certain Exceptional Finite Simple Groups
某些例外有限简单群的子群结构
- 批准号:
2617662 - 财政年份:2021
- 资助金额:
$ 12.4万 - 项目类别:
Studentship
CIF: Small: Foundations and Applications of Blind Subgroup Robustness
CIF:小:盲子群鲁棒性的基础和应用
- 批准号:
2120018 - 财政年份:2021
- 资助金额:
$ 12.4万 - 项目类别:
Standard Grant