Normal Subgroups of the Groups of Rational Points of Algebraic Groups, Congruence Subgroup Problem, and Related Topics

代数群有理点群的正规子群、同余子群问题及相关主题

基本信息

  • 批准号:
    0502120
  • 负责人:
  • 金额:
    $ 20.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-06-01 至 2011-05-31
  • 项目状态:
    已结题

项目摘要

The principle investigator is studying normal subgroups in the groups of rational points of algebraic groups and in their important subgroups (such as S-arithmetic subgroups). Questions of this nature are rooted in the works of the founders of modern algebra such as Galois, Jordan and Dixon, and have been an area of active research in various periods of the20th century (among important contributors one can mention Artin,Dieudonne, Tits). While these works dealt mainly with the isotropic case where one can use unipotent elements, the PI's research focuses on the anisotropic case where no unipotent elements are available, hence essentially new techniques are needed. Anisotropic groups are usually associated withnoncommutative division algebras. Recently, in a joint work of the PI with Y.Segev and G.M.Seitz, new methods for analyzing normal subgroups of the multiplicative group of a finite dimensional division algebra were developed, and the current proposal describes a variety of problems where these methods or their suitable adaptations can (and will) be used. In particular, the PI intends to make a substantial progress in the investigation ofunitary groups over global as well as general fields. Anothercentral topic of the project is the congruence subgroup problemfor S-arithmetic groups. The PI will continue the ongoing jointresearch with G.Prasad focused on proving centrality of thecongruence kernel in new cases, and also the work on the bookproject devoted to the congruence subgroup problem. The investigator's research is on the structure of classical and algebraic groups and their arithmetic subgroups. Questions of this nature are rooted in the works of the founders of modern algebra such as Galois, Jordan and Dixon, and have been an area of active research in various periods of the 20th century. In particular, it should be noted that the congruence subgroup problem is connected with other fundamental problems in number theory, currently applied in data transmission, data processing and communication systems.
主要研究者是研究代数群的有理点群及其重要子群(如S-算术子群)中的正规子群。这种性质的问题是植根于工程的创始人现代代数,如伽罗瓦,约旦和狄克逊,并一直是一个领域的积极研究在各个时期的20世纪世纪(其中重要的贡献者之一,可以提到阿廷,迪厄多内,山雀)。虽然这些工作主要是处理各向同性的情况下,可以使用单幂元素,PI的研究重点是各向异性的情况下,没有单幂元素,因此基本上需要新的技术。各向异性群通常与非交换除代数相联系。最近,在PI与Y.Segev和G. M. Seitz的联合工作中,开发了用于分析有限维除代数的乘法群的正规子群的新方法,并且当前的提议描述了可以(并且将)使用这些方法或其适当的适应的各种问题。特别是,PI打算在全球和一般领域的调查中取得实质性进展。该项目的另一个中心主题是S-算术群的同余子群问题。PI将继续与G.Prasad正在进行的联合研究,重点是证明新情况下的同余核的中心性,以及致力于同余子群问题的书籍项目的工作。调查员的研究是对结构的经典和代数群体和他们的算术分组。这种性质的问题是植根于工程的创始人现代代数,如伽罗瓦,约旦和狄克逊,并一直是一个领域的积极研究在各个时期的20世纪。特别是,应该注意的是,同余子群问题与目前应用于数据传输,数据处理和通信系统的数论中的其他基本问题有关。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrei Rapinchuk其他文献

Andrei Rapinchuk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrei Rapinchuk', 18)}}的其他基金

Conference on Arithmetic Geometry and Algebraic Groups
算术几何与代数群会议
  • 批准号:
    2305231
  • 财政年份:
    2023
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Standard Grant
Elliptic Curves, Torsors, and L-functions
椭圆曲线、Torsors 和 L 函数
  • 批准号:
    1660462
  • 财政年份:
    2017
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Standard Grant
Arithmetic and Zariski-dense subgroups in algebraic groups
代数群中的算术和 Zariski 密集子群
  • 批准号:
    1301800
  • 财政年份:
    2013
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Standard Grant
Arithmetic Groups, Their Applications and Generalizations
算术群、它们的应用和概括
  • 批准号:
    0965758
  • 财政年份:
    2010
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Standard Grant
SM: Arithmetic Groups and Their Applications in Combinatorics, Geometry and Topology
SM:算术群及其在组合学、几何和拓扑中的应用
  • 批准号:
    1034750
  • 财政年份:
    2010
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Standard Grant
Normal Subgroup Structure of the Groups of Rational Points of Algebraic Groups and of Their Special Subgroups
代数群及其特殊子群有理点群的正规子群结构
  • 批准号:
    0138315
  • 财政年份:
    2002
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Continuing Grant
The Congruence Subgroups Problem and Groups of Finite Representation Type
同余子群问题和有限表示型群
  • 批准号:
    9970148
  • 财政年份:
    1999
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Standard Grant
The Congruence Subgroup Problem and Groups of Finite Representation Type
同余子群问题与有限表示型群
  • 批准号:
    9700474
  • 财政年份:
    1997
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Standard Grant

相似海外基金

Geometry, Arithmeticity, and Random Walks on Discrete and Dense Subgroups of Lie Groups
李群的离散和稠密子群上的几何、算术和随机游走
  • 批准号:
    2203867
  • 财政年份:
    2022
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Standard Grant
The geometry Anosov subgroups in Lie groups
李群中的几何阿诺索夫子群
  • 批准号:
    RGPIN-2020-05557
  • 财政年份:
    2022
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Discovery Grants Program - Individual
Studies on quasi-isometry classification of mapping class groups and their subgroups using distortion
利用畸变对映射类群及其子群进行准等距分类的研究
  • 批准号:
    21K13791
  • 财政年份:
    2021
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Subgroups in Artin Groups and Lattices in Products of Trees
Artin 群中的子群和树积中的格
  • 批准号:
    2105548
  • 财政年份:
    2021
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Standard Grant
The geometry Anosov subgroups in Lie groups
李群中的几何阿诺索夫子群
  • 批准号:
    RGPIN-2020-05557
  • 财政年份:
    2021
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Discovery Grants Program - Individual
Subgroups in Artin Groups and Lattices in Products of Trees
Artin 群中的子群和树积中的格
  • 批准号:
    2203307
  • 财政年份:
    2021
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Standard Grant
Action of mapping class groups and its subgroups
映射类组及其子组的操作
  • 批准号:
    441841963
  • 财政年份:
    2020
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Priority Programmes
The geometry Anosov subgroups in Lie groups
李群中的几何阿诺索夫子群
  • 批准号:
    DGECR-2020-00349
  • 财政年份:
    2020
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Discovery Launch Supplement
The geometry Anosov subgroups in Lie groups
李群中的几何阿诺索夫子群
  • 批准号:
    RGPIN-2020-05557
  • 财政年份:
    2020
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Discovery Grants Program - Individual
Orbit Closures in Moduli Spaces of Surfaces and Surface Subgroups of Mapping Class Groups
映射类群的曲面和曲面子群的模空间中的轨道闭包
  • 批准号:
    1856155
  • 财政年份:
    2019
  • 资助金额:
    $ 20.67万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了