Vertex Operator Algebras and the Representation and Cohomology Theory of Groups and Algebras
顶点算子代数以及群和代数的表示和上同调理论
基本信息
- 批准号:9700909
- 负责人:
- 金额:$ 7.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-01 至 2000-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT, MASON 97-00909 Abstract : PI will investigate the mathematical foundations of the theory of vertex operator algebras, their automorphism groups and representation theory, and related questions in the cohomology of groups and algebras and in the theory of modular forms. Techniques are based on past work of the PI and collaborators on the foundations of algebraic conformal field theory, including the theory of Zhu's associative algebras, quantum Galois theory, existence and modular-invariance of twisted sectors, and a cohomological theory of discrete torsion and Dijkgraaf-Witten cocycles. In recent years, mathematicians and physicists alike have been developing conformal field theory, which incorporates infinite-dimensional symmetry, in order to understand certain critical phenomena and also (via string theory) the first rigorous approach to quantum gravity. This effort is a highly intensive mathematical endeavour, and the PI will investigate a number of new phenomena in abstract algebra which are part of this program. So-called vertex operator algebras constitute a rigorous mathematical axiomatization of some of the main ideas of conformal field theory, and the PI will continue his research into the symmetries inherent in these very complicated objects in order to solidify the foundations of the subject and to uncover new phenomena.
摘要,MASON 97-00909 摘要:PI将研究顶点算子代数理论的数学基础,它们的自同构群和表示理论,以及群和代数的上同调和模形式理论中的相关问题。技术是基于过去的工作PI和合作者的基础上的代数共形场论,包括理论的朱的结合代数,量子伽罗瓦理论,存在性和模不变性的扭曲部门,和上同调理论的离散扭转和Dijkgraaf-Witten cocycles。 近年来,数学家和物理学家都在发展包含无限维对称性的共形场论,以理解某些临界现象,也是(通过弦理论)量子引力的第一个严格方法。这项工作是一项高度密集的数学努力,PI将调查抽象代数中的一些新现象,这些现象是该计划的一部分。 所谓的顶点算子代数构成了共形场论的一些主要思想的严格的数学公理化,PI将继续研究这些非常复杂的对象中固有的对称性,以巩固该主题的基础并发现新的现象。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Geoffrey Mason其他文献
Some translation planes of order 72 which admit SL2(9)
- DOI:
10.1007/bf00181594 - 发表时间:
1985-02-01 - 期刊:
- 影响因子:0.500
- 作者:
Geoffrey Mason - 通讯作者:
Geoffrey Mason
Some remarks on groups of typeJ 4
- DOI:
10.1007/bf01220456 - 发表时间:
1977-12-01 - 期刊:
- 影响因子:0.500
- 作者:
Geoffrey Mason - 通讯作者:
Geoffrey Mason
Chromatographic Retention Times Using Mixture Pulses of Different Compositions
- DOI:
10.1007/s10450-005-5910-y - 发表时间:
2005-07-01 - 期刊:
- 影响因子:3.100
- 作者:
Mark J. Heslop;David J. Richardson;Paul A. Russell;Geoffrey Mason;Bryan A. Buffham - 通讯作者:
Bryan A. Buffham
Some translation planes of order p 2 and of extra-special type
- DOI:
10.1007/bf00181595 - 发表时间:
1985-02-01 - 期刊:
- 影响因子:0.500
- 作者:
Geoffrey Mason;T. G. Ostrom - 通讯作者:
T. G. Ostrom
Binary chromatographic retention times from perturbations in flowrate and composition
- DOI:
10.1007/s10450-007-9082-9 - 发表时间:
2007-12-04 - 期刊:
- 影响因子:3.100
- 作者:
Mark J. Heslop;Bryan A. Buffham;Geoffrey Mason - 通讯作者:
Geoffrey Mason
Geoffrey Mason的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Geoffrey Mason', 18)}}的其他基金
Intercampus Workshop: Lie groups, Lie algebras, and their representations
校园间研讨会:李群、李代数及其表示
- 批准号:
1343609 - 财政年份:2013
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Intercampus program: Lie Groups, Lie Algebras, and their Representations
校际课程:李群、李代数及其表示
- 批准号:
1139676 - 财政年份:2011
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Intercampus Workshop Program: Lie groups, Lie algebras, and their representations
校际研讨会计划:李群、李代数及其表示
- 批准号:
0646057 - 财政年份:2007
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Workshop:Lie groups, Lie algebras, and their Representations
研讨会:李群、李代数及其表示
- 批准号:
0245225 - 财政年份:2003
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Mathematical Sciences/GIG: Lie Groups, Algebras and Their Representations
数学科学/GIG:李群、代数及其表示
- 批准号:
9709820 - 财政年份:1997
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Finite Groups & the Theory of Orbifolds
数学科学:有限群
- 批准号:
9401272 - 财政年份:1994
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Conformal Field Theories Associated with the Monster Simple Group
数学科学:与怪物简单群相关的共形场论
- 批准号:
9122030 - 财政年份:1992
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Automorphic L-functions and Representation Theory
数学科学:自守 L 函数和表示论
- 批准号:
9123845 - 财政年份:1992
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Finite Groups and Elliptic Cohomology
数学科学:有限群和椭圆上同调
- 批准号:
8818957 - 财政年份:1989
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Finite Groups and Modular Forms
数学科学:有限群和模形式
- 批准号:
8616084 - 财政年份:1987
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
相似海外基金
Identities from Vertex Operator Algebras on the Moduli of Curves
曲线模上顶点算子代数的恒等式
- 批准号:
2200862 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Modular linear differential equations and vertex operator algebras
模线性微分方程和顶点算子代数
- 批准号:
22K03249 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Higher Quantum Airy Structures from Vertex Operator Algebras
顶点算子代数的更高量子艾里结构
- 批准号:
569537-2022 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Research on vertex operator algebras by using Conway groups
利用康威群研究顶点算子代数
- 批准号:
21K03195 - 财政年份:2021
- 资助金额:
$ 7.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on uniform construction and automorphism groups of holomorphic vertex operator algebras of central charge 24
中心电荷全纯顶点算子代数的一致构造和自同构群研究 24
- 批准号:
20K03505 - 财政年份:2020
- 资助金额:
$ 7.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symmetric functions and vertex operator algebras
对称函数和顶点算子代数
- 批准号:
2279467 - 财政年份:2019
- 资助金额:
$ 7.5万 - 项目类别:
Studentship
Vertex Operator Algebras, Number Theory, and Related Topics
顶点算子代数、数论及相关主题
- 批准号:
1802478 - 财政年份:2018
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Research on uniqueness of holomorphic vertex operator algebras of central charge 24 by using reverse orbifold construction
利用逆轨道折叠结构研究中心电荷24全纯顶点算子代数的唯一性
- 批准号:
17K05154 - 财政年份:2017
- 资助金额:
$ 7.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Vertex operator algebras and modular differential equations
顶点算子代数和模微分方程
- 批准号:
17K05171 - 财政年份:2017
- 资助金额:
$ 7.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EAPSI: Modular Vertex Operator Algebras Associated with the Virasoro Algebra
EAPSI:与 Virasoro 代数相关的模顶点算子代数
- 批准号:
1713945 - 财政年份:2017
- 资助金额:
$ 7.5万 - 项目类别:
Fellowship Award