Estimating Intrinsic Dimensionality
估计内在维度
基本信息
- 批准号:9704557
- 负责人:
- 金额:$ 9.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-08-01 至 2001-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Walther 9704557 The goal of this research is to detect nonlinear structure in multivariate data by estimating the intrinsic dimensionality of a data set. A multivariate data set that, apart from noise, falls into a lower-dimensional smooth submanifold is said to have intrinsic dimensionality equal to the smallest dimension of such a submanifold. A knowledge or estimate of the intrinsic dimensionality of a data set contributes to the solution of two important problems in multivariate statistics and pattern analysis: The problem of finding an appropriate number of parameters for representing the data, and the problem of deciding whether a two- or three-dimensional representation of the data exists, which may then be analyzed visually. This research develops a new way to estimate intrinsic dimensionality that promises be superior to existing methods for heuristic reasons, and investigates the statistical properties of the new estimator and its competitors. The new estimator uses a method to smooth the shape of a multivariate data set in a nonlinear way which is based on tools from the field of mathematical morphology. The goal of this research is to detect certain patterns in data, such as structured parts in medical images. Quite complicated and high-dimensional data sets have often certain simple, low-dimensional geometric structures in it. To extract information from these data in an efficient way it is important to find such structures and describe them in ways that are simple and and amenable for the processing by computers. This research uses certain geometric tools to develop such a processing system in a context where the patterns to be found are corrupted by noise, e.g. transmission errors or blurring in images.
瓦尔特9704557 本研究的目标是通过估计数据集的内在维数来检测多变量数据中的非线性结构。 一个多元数据集,除了噪声,福尔斯落入一个低维光滑子流形被称为具有内在维数等于这样的子流形的最小维度。 数据集的内在维度的知识或估计有助于解决多变量统计和模式分析中的两个重要问题:找到适当数量的参数来表示数据的问题,以及决定数据是否存在二维或三维表示的问题,然后可以进行可视化分析。 本研究发展了一种新的方法来估计内在维数,承诺是上级现有的方法的启发式的原因,并调查新的估计和它的竞争对手的统计特性。 新的估计器使用一种方法,以非线性的方式,这是基于数学形态学领域的工具来平滑的形状的多变量数据集。 本研究的目标是检测数据中的某些模式,例如医学图像中的结构化部分。在复杂的高维数据集中,往往存在一些简单的低维几何结构,为了有效地从这些数据中提取信息,必须找到这些结构,并以简单易行的方式描述它们,以便于计算机处理。本研究使用某些几何工具来开发这样的处理系统,其中要找到的图案被噪声破坏,例如图像中的传输错误或模糊。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guenther Walther其他文献
Guenther Walther的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guenther Walther', 18)}}的其他基金
Multivariate Histograms and Inference with Finite Sample Guarantees
具有有限样本保证的多元直方图和推理
- 批准号:
1916074 - 财政年份:2019
- 资助金额:
$ 9.15万 - 项目类别:
Standard Grant
ATD: Statistical methodology and algorithms for detection problems
ATD:检测问题的统计方法和算法
- 批准号:
1220311 - 财政年份:2012
- 资助金额:
$ 9.15万 - 项目类别:
Continuing Grant
Detection with scan statistics and average likelihood ratio: Methodology
使用扫描统计数据和平均似然比进行检测:方法论
- 批准号:
1007722 - 财政年份:2010
- 资助金额:
$ 9.15万 - 项目类别:
Continuing Grant
CAREER: Statistics for Flow Cytometry and Freshman Seminars
职业:流式细胞术统计和新生研讨会
- 批准号:
9875598 - 财政年份:1999
- 资助金额:
$ 9.15万 - 项目类别:
Standard Grant
相似国自然基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Turning defects into allies to develop intrinsic resistance to hydrogen-induced fractures (ResistHfracture)
化缺陷为盟友,增强对氢致断裂的内在抵抗力 (ResistHfracture)
- 批准号:
EP/Y037219/1 - 财政年份:2024
- 资助金额:
$ 9.15万 - 项目类别:
Research Grant
CAREER: Experimental Determination and Fundamental Theory of Mesoscopic Transport and Intrinsic Kinetics in CO2 Electrocatalysis
职业:二氧化碳电催化中介观输运和本征动力学的实验测定和基础理论
- 批准号:
2339693 - 财政年份:2024
- 资助金额:
$ 9.15万 - 项目类别:
Continuing Grant
SafePhage: Engineering synthetic phages with intrinsic biocontainment
SafePhage:具有内在生物防护的工程合成噬菌体
- 批准号:
BB/Y007743/1 - 财政年份:2024
- 资助金额:
$ 9.15万 - 项目类别:
Research Grant
Intrinsic effects of organ-specific microenvironments on cancer evolution and heterogeneity.
器官特异性微环境对癌症进化和异质性的内在影响。
- 批准号:
22KJ3156 - 财政年份:2023
- 资助金额:
$ 9.15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
INTeRnal waves In angular momeNtum StratifICation (INTRINSIC)
角动量分层中的内波(内在)
- 批准号:
2220343 - 财政年份:2023
- 资助金额:
$ 9.15万 - 项目类别:
Standard Grant
Does toe flexion strength training induce neuromuscular adaptations in plantar intrinsic foot muscles?
脚趾屈曲力量训练是否会引起足底内在足部肌肉的神经肌肉适应?
- 批准号:
23K19908 - 财政年份:2023
- 资助金额:
$ 9.15万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Retinal Ganglion Cell Signaling Regulated By Intrinsic Reactive Oxygen Species
视网膜神经节细胞信号传导受内在活性氧的调节
- 批准号:
10588039 - 财政年份:2023
- 资助金额:
$ 9.15万 - 项目类别:
Defining cell intrinsic and extrinsic regulators of ferroptosis in pancreatic cancer
定义胰腺癌铁死亡的细胞内在和外在调节因子
- 批准号:
10679812 - 财政年份:2023
- 资助金额:
$ 9.15万 - 项目类别:
Inducing H3F3A exon skipping with antisense oligonucleotides as an approach to treat diffuse intrinsic pontine glioma
用反义寡核苷酸诱导 H3F3A 外显子跳跃作为治疗弥漫性内源性脑桥胶质瘤的方法
- 批准号:
10677284 - 财政年份:2023
- 资助金额:
$ 9.15万 - 项目类别:
Intrinsic and Extrinsic factors regulating neurogenic competence in hypothalamic tanycytes
调节下丘脑单细胞神经源能力的内在和外在因素
- 批准号:
10828978 - 财政年份:2023
- 资助金额:
$ 9.15万 - 项目类别: