ATD: Statistical methodology and algorithms for detection problems

ATD:检测问题的统计方法和算法

基本信息

  • 批准号:
    1220311
  • 负责人:
  • 金额:
    $ 47.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

The investigator will develop new statistical methodology and algorithms for the quick detection of the abrupt emergence of a signal which is observed by a sensor in a noisy data stream or by an array of sensors in multiple data streams. A particular emphasis will be on the construction of techniques for effectively combining the information from several sensors. Such techniques are essential when the signal is weak and observed by only a small fraction of the sensors. Part of the proposed new methodology is based on recent advances in the statistical theory of multiscale analysis. Theoretical investigations of these recent advances in the abstract Gaussian White Noise model suggest that clear improvements in detection power are possible for the problem of a quick detection of a change point, and the investigator plans to adapt these ideas for this problem, to investigate its theoretical performance, and to develop efficient algorithms for its implementation. The second main emphasis is to develop improved statistical methodology to combine the information from several data streams using a novel criterion based on the average likelihood ratio. In preliminary work the investigator has shown that this criterion results in superior detection power in a large-scale multiple testing context, and the investigator will develop corresponding methodology for the detection of a signal in multiple data streams.Change-point detection plays an important role in a range of problems such as the detection of radioactive and biochemical threats, environmental monitoring, or the detection of recurrent DNA copy number variants in multiple samples in high-thoughput genomics. Advances in detection methodology have thus a direct impact on important problems in national security and in high-thoughput genomics, e.g. in terms of a shorter time to the detection of chemical agents and biological threats. The investigator will adapt recent results in statistical theory to these detection problems. The theoretical results suggest that clear improvements in detection power are possible in these important problems.
研究人员将开发新的统计方法和算法,用于快速检测由噪声数据流中的传感器或多个数据流中的传感器阵列观察到的信号的突然出现。一个特别的重点将是构建有效结合来自几个传感器的信息的技术。当信号很弱,并且只有一小部分传感器可以观察到时,这种技术是必不可少的。拟议的新方法的一部分是基于多尺度分析统计理论的最新进展。对抽象高斯白噪声模型中这些最新进展的理论研究表明,对于快速检测变化点的问题,检测能力有可能明显提高,研究人员计划将这些想法应用于这个问题,研究其理论性能,并为其实现开发有效的算法。第二个主要重点是开发改进的统计方法,使用基于平均似然比的新标准将来自几个数据流的信息组合在一起。在前期工作中,研究人员已经证明,该标准在大规模多个测试环境中具有优越的检测能力,研究人员将开发相应的方法来检测多个数据流中的信号。变点检测在一系列问题中发挥着重要作用,如放射性和生化威胁的检测、环境监测或高吞吐量基因组学中多个样本中重复DNA拷贝数变异的检测。因此,检测方法的进步对国家安全和高产出基因组学中的重要问题具有直接影响,例如,在缩短检测化学制剂和生物威胁的时间方面。研究人员将使统计学理论中的最新结果适用于这些检测问题。理论结果表明,在这些重要问题上,探测能力的明显提高是可能的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guenther Walther其他文献

Guenther Walther的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guenther Walther', 18)}}的其他基金

Multivariate Histograms and Inference with Finite Sample Guarantees
具有有限样本保证的多元直方图和推理
  • 批准号:
    1916074
  • 财政年份:
    2019
  • 资助金额:
    $ 47.16万
  • 项目类别:
    Standard Grant
Detection with scan statistics and average likelihood ratio: Methodology
使用扫描统计数据和平均似然比进行检测:方法论
  • 批准号:
    1007722
  • 财政年份:
    2010
  • 资助金额:
    $ 47.16万
  • 项目类别:
    Continuing Grant
Quantitating Heterogeneity
定量异质性
  • 批准号:
    0505682
  • 财政年份:
    2005
  • 资助金额:
    $ 47.16万
  • 项目类别:
    Standard Grant
CAREER: Statistics for Flow Cytometry and Freshman Seminars
职业:流式细胞术统计和新生研讨会
  • 批准号:
    9875598
  • 财政年份:
    1999
  • 资助金额:
    $ 47.16万
  • 项目类别:
    Standard Grant
Estimating Intrinsic Dimensionality
估计内在维度
  • 批准号:
    9704557
  • 财政年份:
    1997
  • 资助金额:
    $ 47.16万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
  • 批准号:
    2319592
  • 财政年份:
    2023
  • 资助金额:
    $ 47.16万
  • 项目类别:
    Continuing Grant
Statistical Methods for Whole-Brain Dynamic Connectivity Analysis
全脑动态连接分析的统计方法
  • 批准号:
    10594266
  • 财政年份:
    2023
  • 资助金额:
    $ 47.16万
  • 项目类别:
Statistical methods for co-expression network analysis of population-scale scRNA-seq data
群体规模 scRNA-seq 数据共表达网络分析的统计方法
  • 批准号:
    10740240
  • 财政年份:
    2023
  • 资助金额:
    $ 47.16万
  • 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
  • 批准号:
    10590913
  • 财政年份:
    2023
  • 资助金额:
    $ 47.16万
  • 项目类别:
CAREER: New Challenges in Statistical Genetics: Mendelian Randomization, Integrated Omics and General Methodology
职业:统计遗传学的新挑战:孟德尔随机化、综合组学和通用方法论
  • 批准号:
    2238656
  • 财政年份:
    2023
  • 资助金额:
    $ 47.16万
  • 项目类别:
    Continuing Grant
Statistical methods to understand changes in dietary patterns over time and cardiovascular disease risk among understudied populations
了解受研究人群饮食模式随时间变化和心血管疾病风险的统计方法
  • 批准号:
    10571108
  • 财政年份:
    2023
  • 资助金额:
    $ 47.16万
  • 项目类别:
Statistical Methods for Advancing HIV Prevention
促进艾滋病毒预防的统计方法
  • 批准号:
    10700642
  • 财政年份:
    2023
  • 资助金额:
    $ 47.16万
  • 项目类别:
Collaborative Research: DMS/NIGMS 2: New statistical methods, theory, and software for microbiome data
合作研究:DMS/NIGMS 2:微生物组数据的新统计方法、理论和软件
  • 批准号:
    10797410
  • 财政年份:
    2023
  • 资助金额:
    $ 47.16万
  • 项目类别:
Statistical methods for analysis of high-dimensional mediation pathways
高维中介路径分析的统计方法
  • 批准号:
    10582932
  • 财政年份:
    2023
  • 资助金额:
    $ 47.16万
  • 项目类别:
Improving the design and statistical analysis of cluster-randomized trials on tropical infectious diseases
改进热带传染病整群随机试验的设计和统计分析
  • 批准号:
    10570440
  • 财政年份:
    2023
  • 资助金额:
    $ 47.16万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了