Kinetic and Hydrodynamic Limits

动力学和流体动力学极限

基本信息

  • 批准号:
    9704565
  • 负责人:
  • 金额:
    $ 7.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-07-01 至 2000-06-30
  • 项目状态:
    已结题

项目摘要

9704565 Rezakhanlou An outstanding and long studied problem in statistical mechanics is to establish the connection between the microscopic structure of a fluid (or a gas) and its macroscopic behavior. Perhaps the most celebrated problem in this context is the derivation of the hydrodynamic and kinetic equations from small scale dynamics governed by the Newton's second law. This problem is still wide open but some variants have been recently treated. The investigator's research concerns the analysis of particle systems modeling fluids and gas. Recently the investigator in collaboration with James Tarver has derived a Boltzmann type equation for the macroscopic particle densities of a class stochastic particle systems modeling dilute gases. Roughly speaking one shows that after a suitable scaling the microscopic particle density converges to a solution of a Boltzmann type equation. The investigator also shows that the convergence is exponentially fast and derives an explicit expression for the exponential rate of convergence. This result allows us to go beyond the macroscopic description given by the Boltzmann equation and obtain some valuable insight about the microscopic structure of the particle system under study. Our world appears differently at different scales. For example a fluid or a gas is a collection of an enormous number of molecules that collide incessantly and move erratically without any particular aim. How do these molecules then manage to organize themselves in such a way as to form a flow pattern on a large scale? Roughly the reason is that the local conservation laws of mass, momentum and energy impose constraints not immediately visible on the microscopic scale. The investigator's research concerns the relationship between the microscopic structure and the macroscopic behavior of fluids and gases. The analysis of the mathematical models consisting of a large number of interacting particles has proved to be useful in understanding the intricate behavior of fluids and gases. Moreover, interacting particle systems turn out to be the most efficient way of simulating the flow patterns of dilute gases.
[704565] Rezakhanlou统计力学中一个长期研究的突出问题是建立流体(或气体)的微观结构与其宏观行为之间的联系。也许在这方面最著名的问题是由牛顿第二定律支配的小尺度动力学推导出流体动力学和动力学方程。这个问题仍然悬而未决,但一些变体最近得到了治疗。研究者的研究涉及对模拟流体和气体的粒子系统的分析。最近,研究者与James Tarver合作,导出了一类模拟稀气体的随机粒子系统的宏观粒子密度的玻尔兹曼型方程。粗略地说,经过适当的缩放后,微观粒子密度收敛于玻尔兹曼型方程的解。研究人员还证明了收敛速度是指数级的,并导出了指数收敛速度的显式表达式。这一结果使我们能够超越玻尔兹曼方程给出的宏观描述,并对所研究的粒子系统的微观结构获得一些有价值的见解。我们的世界在不同的尺度上呈现出不同的面貌。例如,流体或气体是大量分子的集合,这些分子不停地碰撞,无规律地运动,没有任何特定的目标。那么这些分子是如何组织起来,形成大规模的流动模式的呢?大致原因是,质量、动量和能量的局部守恒定律施加了在微观尺度上无法立即看到的约束。研究者的研究涉及流体和气体的微观结构和宏观行为之间的关系。对由大量相互作用的粒子组成的数学模型的分析已证明对理解流体和气体的复杂行为是有用的。此外,相互作用的粒子系统被证明是模拟稀气体流动模式的最有效方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fraydoun Rezakhanlou其他文献

Evolution of tagged particles in non-reversible particle systems
The Random Arnold Conjecture: A New Probabilistic Conley-Zehnder Theory for Symplectic Maps
  • DOI:
    10.1007/s00220-024-05160-x
  • 发表时间:
    2025-01-11
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Álvaro Pelayo;Fraydoun Rezakhanlou
  • 通讯作者:
    Fraydoun Rezakhanlou
Scalar conservation laws with monotone pure-jump Markov initial conditions
  • DOI:
    10.1007/s00440-015-0648-2
  • 发表时间:
    2015-07-29
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    David C. Kaspar;Fraydoun Rezakhanlou
  • 通讯作者:
    Fraydoun Rezakhanlou
Kinetic Statistics of Scalar Conservation Laws with Piecewise-Deterministic Markov Process Data
A Stochastic Model Associated with Enskog Equation and Its Kinetic Limit

Fraydoun Rezakhanlou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fraydoun Rezakhanlou', 18)}}的其他基金

Probabilistic Methods in Symplectic Geometry and Fluid Mechanics
辛几何和流体力学中的概率方法
  • 批准号:
    1407723
  • 财政年份:
    2014
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Standard Grant
Large Deviation, Kinetic Limit and Gelation
大偏差、动力学极限和凝胶化
  • 批准号:
    1106526
  • 财政年份:
    2011
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Continuing Grant
Collective Behavior of Stochastic Systems
随机系统的集体行为
  • 批准号:
    0707890
  • 财政年份:
    2007
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Continuing Grant
Scaling Limits for Microscopic Models
微观模型的缩放限制
  • 批准号:
    0307021
  • 财政年份:
    2003
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Continuing Grant
Homogenizations Continuum Limits and Kinetic Limits for Stochastic Models
随机模型的均质化连续体极限和动力学极限
  • 批准号:
    0072666
  • 财政年份:
    2000
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Interacting Particle Systems and Hydrodynamics
数学科学:相互作用的粒子系统和流体动力学
  • 批准号:
    9424270
  • 财政年份:
    1995
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Infinite Particle Systems and Hydrodynamics
数学科学:无限粒子系统和流体动力学
  • 批准号:
    9208490
  • 财政年份:
    1992
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Standard Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
半导体Hydrodynamic能量模型的数学分析
  • 批准号:
    10001034
  • 批准年份:
    2000
  • 资助金额:
    5.5 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Microscale radiography of hydrodynamic instabilities mitigation in magnetized high-density laser plasmas
磁化高密度激光等离子体中流体动力学不稳定性缓解的微尺度射线照相
  • 批准号:
    24K06988
  • 财政年份:
    2024
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Open-source GPU-accelerated computational infrastructure for coastal fluid-structure interaction in extreme hydrodynamic conditions
职业:极端​​水动力条件下沿海流固耦合的开源 GPU 加速计算基础设施
  • 批准号:
    2338313
  • 财政年份:
    2024
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Standard Grant
Fully general-relativistic magneto-hydrodynamic simulations beyond Relativity with GPUs
使用 GPU 进行超越相对论的完全广义相对论磁流体动力学模拟
  • 批准号:
    ST/Z000424/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Research Grant
Extremely efficient fully three-dimensional hydrodynamic simulations of supernova remnants for the new age of microcalorimetric X-ray astronomy
针对微量热 X 射线天文学新时代的超新星遗迹进行极其高效的全三维流体动力学模拟
  • 批准号:
    24K07092
  • 财政年份:
    2024
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332916
  • 财政年份:
    2024
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332917
  • 财政年份:
    2024
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Standard Grant
Advancement in prediction of hydrodynamic characteristics under the free-surface and discharge evaluation by using the turbulence information measured by live camera images
利用实时相机图像测量的湍流信息预测自由表面下的水动力特性和流量评估的进展
  • 批准号:
    23K04043
  • 财政年份:
    2023
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlocal Hydrodynamic Models of Interacting Agents
相互作用主体的非局域流体动力学模型
  • 批准号:
    EP/V000586/2
  • 财政年份:
    2023
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Fellowship
Hydrodynamic effect on the production and fate of coral mucus
水动力对珊瑚粘液产生和命运的影响
  • 批准号:
    23K17033
  • 财政年份:
    2023
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Hydrodynamic systematization of mixing phenomena - Collectivity and individuality of particulate suspension -
混合现象的流体动力学系统化 - 颗粒悬浮液的集体性和个体性 -
  • 批准号:
    23H01334
  • 财政年份:
    2023
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了