Homogenizations Continuum Limits and Kinetic Limits for Stochastic Models

随机模型的均质化连续体极限和动力学极限

基本信息

  • 批准号:
    0072666
  • 负责人:
  • 金额:
    $ 9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-07-15 至 2004-06-30
  • 项目状态:
    已结题

项目摘要

An outstanding and long studied problem in statistical mechanics is to establish the connection between the microscopic world and its macroscopic behavior. The investigator's research concerns stochastic models associated with the evolution of dilute gases and the formation of solids. As the first step, one derives a partial differential equation for the macroscopic evolution of such stochastic models. Roughly speaking, one shows that after a suitable scaling, the particle density of a dilute gas (respectively, the boundary surface of a solid) converges to a solution of the Boltzmann equation (respectively, Hamilton-Jacobi equation). Probabilistically, such a convergence is a law of large numbers and its corresponding central limit theorem provides us with some vital information about the microscopic model under the study. Solids form through growth processes which take place at the surface. Imagine an already formed nucleus to which further material sticks from the ambient atmosphere. The process of the attachment is a function of a huge variety of growth mechanisms depending on the materials involved, their temperature, composition, etc. Following the tradition of statistical mechanics, one studies simplified models which nevertheless captures some of the essential physics. Such simplified models are proved to be useful in understanding the intricate formation of solids. It turns out that these models describe other phenomena such as the spread of infected cells in a tissue, the effect of impurity in the evolution of a fluid, etc. The investigator's research concerns the interplay between the microscopic growth rules and the macroscopic shape of the surface of a solid.
统计力学中一个突出且长期研究的问题是建立微观世界与其宏观行为之间的联系。研究人员的研究涉及与稀气体演化和固体形成相关的随机模型。第一步,推导此类随机模型的宏观演化的偏微分方程。粗略地说,表明经过适当的缩放后,稀气体(分别为固体的边界面)的粒子密度收敛于玻尔兹曼方程(分别为哈密尔顿-雅可比方程)的解。从概率上讲,这种收敛是大数定律,其相应的中心极限定理为我们提供了有关所研究的微观模型的一些重要信息。 固体通过在表面发生的生长过程形成。想象一个已经形成的核,周围大气中的更多物质粘附在该核上。附着过程是多种生长机制的函数,具体取决于所涉及的材料、温度、成分等。遵循统计力学的传统,人们研究了简化的模型,但仍然捕获了一些基本的物理原理。事实证明,这种简化模型有助于理解固体的复杂形成。事实证明,这些模型描述了其他现象,例如组织中受感染细胞的传播、流体演化中杂质的影响等。研究人员的研究涉及固体表面的微观生长规则和宏观形状之间的相互作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fraydoun Rezakhanlou其他文献

Evolution of tagged particles in non-reversible particle systems
The Random Arnold Conjecture: A New Probabilistic Conley-Zehnder Theory for Symplectic Maps
  • DOI:
    10.1007/s00220-024-05160-x
  • 发表时间:
    2025-01-11
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Álvaro Pelayo;Fraydoun Rezakhanlou
  • 通讯作者:
    Fraydoun Rezakhanlou
Scalar conservation laws with monotone pure-jump Markov initial conditions
  • DOI:
    10.1007/s00440-015-0648-2
  • 发表时间:
    2015-07-29
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    David C. Kaspar;Fraydoun Rezakhanlou
  • 通讯作者:
    Fraydoun Rezakhanlou
Kinetic Statistics of Scalar Conservation Laws with Piecewise-Deterministic Markov Process Data
A Stochastic Model Associated with Enskog Equation and Its Kinetic Limit

Fraydoun Rezakhanlou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fraydoun Rezakhanlou', 18)}}的其他基金

Probabilistic Methods in Symplectic Geometry and Fluid Mechanics
辛几何和流体力学中的概率方法
  • 批准号:
    1407723
  • 财政年份:
    2014
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Large Deviation, Kinetic Limit and Gelation
大偏差、动力学极限和凝胶化
  • 批准号:
    1106526
  • 财政年份:
    2011
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
Collective Behavior of Stochastic Systems
随机系统的集体行为
  • 批准号:
    0707890
  • 财政年份:
    2007
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
Scaling Limits for Microscopic Models
微观模型的缩放限制
  • 批准号:
    0307021
  • 财政年份:
    2003
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
Kinetic and Hydrodynamic Limits
动力学和流体动力学极限
  • 批准号:
    9704565
  • 财政年份:
    1997
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Interacting Particle Systems and Hydrodynamics
数学科学:相互作用的粒子系统和流体动力学
  • 批准号:
    9424270
  • 财政年份:
    1995
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Infinite Particle Systems and Hydrodynamics
数学科学:无限粒子系统和流体动力学
  • 批准号:
    9208490
  • 财政年份:
    1992
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant

相似海外基金

MICRO-CYCLE: Unravelling the role of microbial genomic traits in organic matter cycling and molecular composition along the river continuum
微循环:揭示微生物基因组特征在河流连续体有机物循环和分子组成中的作用
  • 批准号:
    NE/Z000106/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Research Grant
Vision Servoing Based Micro Continuum Robot Actuated by SMA Wires for Precise Laser Irradiation during Transurethral Lithotripsy
基于视觉伺服的微型连续体机器人由 SMA 线驱动,用于经尿道碎石术期间的精确激光照射
  • 批准号:
    24K21116
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Enabling a Novel Evaluation Continuum for Connected & Autonomous Vehicles
实现互联的新颖评估连续体
  • 批准号:
    MR/Y003969/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Fellowship
I-Corps: Translation Potential of a Minimally Invasive Continuum Surgical Robot for the Eye/Ear
I-Corps:眼/耳微创连续手术机器人的翻译潜力
  • 批准号:
    2420989
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
MICRO-CYCLE: Unravelling the role of microbial genomic traits in organic matter cycling and molecular composition along the river continuum
微循环:揭示微生物基因组特征在河流连续体有机物循环和分子组成中的作用
  • 批准号:
    NE/Z000173/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Research Grant
Low-dimensional material-based nanolaser using photonic bound states in the continuum
使用连续体中的光子束缚态的基于低维材料的纳米激光器
  • 批准号:
    23K26155
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Safe Continuum Robot Inside Magnetic Resonance Imaging (MRI)
职业:磁共振成像 (MRI) 内的安全连续体机器人
  • 批准号:
    2339202
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
A general continuum theory of polycrystalline materials
多晶材料的一般连续介质理论
  • 批准号:
    EP/X037800/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Research Grant
MYRTUS: Multi-layer 360° dYnamic orchestrion and interopeRable design environmenT for compute-continUum Systems
MYRTUS:用于连续计算系统的多层 360° 动态编排和可互操作设计环境
  • 批准号:
    10087666
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    EU-Funded
Integrating universal and tailored approaches across the continuum of mental health and substance use supports: Supporting the implementation and coordination of the Icelandic Prevention Model and Integrated Youth Services
在心理健康和药物滥用支持的连续过程中整合通用和量身定制的方法:支持冰岛预防模式和综合青年服务的实施和协调
  • 批准号:
    477940
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Salary Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了