Scaling Limits for Microscopic Models

微观模型的缩放限制

基本信息

  • 批准号:
    0307021
  • 负责人:
  • 金额:
    $ 17.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-07-01 至 2007-06-30
  • 项目状态:
    已结题

项目摘要

A fundamental and long studied problem in statistical mechanics is to establish the connection between the microscopic world and its macroscopic behavior. The investigator's research concerns stochastic models associated with the evolution of dilute gases, coagulation-fragmentation phenomenon and the formation of solids. As the first step, one derives a partial differential equation for the macroscopic evolution of such stochastic models. In the case of a dilute gas, one shows that after a suitable scaling, the particle density converges to a solution of the Boltzmann equation. In the case of the coagulation-fragmentation phenomenon, the rescaled microscopic particle density converges to a solution of the Smoluchowski equation. As a model of a crystal, one may consider an inhomogeneous Hamilton-Jacobi equation with viscosity. After a suitable scaling, the solutions converge to solutions of homogeneous Hamilton-Jacobi equation. Probabilistically, such a convergence is a law of large numbers and its corresponding central limit theorem and large deviation principle provide us with some vital information about the microscopic model under the study. Our world appears differently at different scales! For example a fluid or a gas is a collection of an enormous number of molecules that collide incessantly and move erratically without any particular aim. However these molecules manage to organize themselves in such a way as to form a flow pattern on a large scale. The investigator's research concerns the relationship between the microscopic structure and the macroscopic behavior of fluids, gases and solids. The analysis of the mathematical models consisting of a large number of interacting particles is proved to be useful in understanding the intricate behavior of fluids and gases. Moreover, interacting particle systems turn out to be the most efficient way of simulating the flow patterns of dilute gases.
统计力学中一个基本的和长期研究的问题是建立微观世界和宏观行为之间的联系。该研究员的研究涉及与稀气体演化、凝聚-碎裂现象和固体形成有关的随机模型。作为第一步,推导出这样的随机模型的宏观演化的偏微分方程。在稀释气体的情况下,一个表明,经过适当的缩放,粒子密度收敛到玻尔兹曼方程的解。在凝聚-破碎现象的情况下,重新缩放的微观颗粒密度收敛于Smoluchowski方程的解。作为晶体的模型,可以考虑具有粘性的非齐次Hamilton-Jacobi方程。经过适当的尺度变换后,解收敛到齐次Hamilton-Jacobi方程的解。从概率上讲,这种收敛是一个大数定律,其相应的中心极限定理和大偏差原理为我们提供了一些关于所研究的微观模型的重要信息。 我们的世界在不同的尺度下看起来不同!例如,流体或气体是大量分子的集合,这些分子不停地碰撞,不规则地运动,没有任何特定的目标。然而,这些分子设法以这样一种方式组织自己,从而形成大规模的流动模式。研究者的研究涉及流体,气体和固体的微观结构和宏观行为之间的关系。分析由大量相互作用的粒子组成的数学模型被证明是有用的,在理解流体和气体的复杂行为。此外,相互作用粒子系统被证明是模拟稀气体流动模式的最有效方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fraydoun Rezakhanlou其他文献

Evolution of tagged particles in non-reversible particle systems
The Random Arnold Conjecture: A New Probabilistic Conley-Zehnder Theory for Symplectic Maps
  • DOI:
    10.1007/s00220-024-05160-x
  • 发表时间:
    2025-01-11
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Álvaro Pelayo;Fraydoun Rezakhanlou
  • 通讯作者:
    Fraydoun Rezakhanlou
Scalar conservation laws with monotone pure-jump Markov initial conditions
  • DOI:
    10.1007/s00440-015-0648-2
  • 发表时间:
    2015-07-29
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    David C. Kaspar;Fraydoun Rezakhanlou
  • 通讯作者:
    Fraydoun Rezakhanlou
Kinetic Statistics of Scalar Conservation Laws with Piecewise-Deterministic Markov Process Data
A Stochastic Model Associated with Enskog Equation and Its Kinetic Limit

Fraydoun Rezakhanlou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fraydoun Rezakhanlou', 18)}}的其他基金

Probabilistic Methods in Symplectic Geometry and Fluid Mechanics
辛几何和流体力学中的概率方法
  • 批准号:
    1407723
  • 财政年份:
    2014
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Standard Grant
Large Deviation, Kinetic Limit and Gelation
大偏差、动力学极限和凝胶化
  • 批准号:
    1106526
  • 财政年份:
    2011
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Continuing Grant
Collective Behavior of Stochastic Systems
随机系统的集体行为
  • 批准号:
    0707890
  • 财政年份:
    2007
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Continuing Grant
Homogenizations Continuum Limits and Kinetic Limits for Stochastic Models
随机模型的均质化连续体极限和动力学极限
  • 批准号:
    0072666
  • 财政年份:
    2000
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Continuing Grant
Kinetic and Hydrodynamic Limits
动力学和流体动力学极限
  • 批准号:
    9704565
  • 财政年份:
    1997
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Interacting Particle Systems and Hydrodynamics
数学科学:相互作用的粒子系统和流体动力学
  • 批准号:
    9424270
  • 财政年份:
    1995
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Infinite Particle Systems and Hydrodynamics
数学科学:无限粒子系统和流体动力学
  • 批准号:
    9208490
  • 财政年份:
    1992
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Standard Grant

相似海外基金

Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
  • 批准号:
    EP/Y027795/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Research Grant
Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
  • 批准号:
    24K06758
  • 财政年份:
    2024
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
  • 批准号:
    2340289
  • 财政年份:
    2024
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Continuing Grant
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
  • 批准号:
    2337375
  • 财政年份:
    2024
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Continuing Grant
Flame quenching and Lean blow-off limits of new zero/low-carbon fuels towards delivering a green Aviation; a combined Modelling & Experimental study
新型零碳/低碳燃料的熄火和精益吹气限制,以实现绿色航空;
  • 批准号:
    EP/Y020839/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Research Grant
Pushing the limits of electronic delocalization in organic molecules
突破有机分子电子离域的极限
  • 批准号:
    DE240100664
  • 财政年份:
    2024
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Discovery Early Career Researcher Award
CAREER: Learning from Data on Structured Complexes: Products, Bundles, and Limits
职业:从结构化复合体的数据中学习:乘积、捆绑和限制
  • 批准号:
    2340481
  • 财政年份:
    2024
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Continuing Grant
Understanding plasticity of metals through mean-field limits of stochastic interacting particle systems
通过随机相互作用粒子系统的平均场限制了解金属的可塑性
  • 批准号:
    24K06843
  • 财政年份:
    2024
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Asymptotic patterns and singular limits in nonlinear evolution problems
非线性演化问题中的渐近模式和奇异极限
  • 批准号:
    EP/Z000394/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Research Grant
Pushing the Limits of High-Field Solid-State NMR Technology: Enhancing Applications to Advanced Materials, the Life Sciences and Pharmaceuticals
突破高场固态核磁共振技术的极限:增强先进材料、生命科学和制药的应用
  • 批准号:
    EP/Z532836/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了