Large Deviation, Kinetic Limit and Gelation
大偏差、动力学极限和凝胶化
基本信息
- 批准号:1106526
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-15 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
An outstanding and long studied problem in statistical mechanics is to establish the connection between the microscopic world and its macroscopic behavior. The investigator's research concerns stochastic and deterministic models associated with the evolution of gases, the formation of gels and crystals, and Hamiltonian systems with random potentials. As the first step, one derives a partial differential equation for the macroscopic evolution of such stochastic models. Roughly, after a suitable scaling, the density of particles in a gas with grazing collisions converges to a solution of Landau Equation, a rough interface modeled by Hamilton-Jacobi PDE with impurity homogenizes to a homogeneous Hamilton-Jacobi equation, and a chain of particles with random potential are governed by an effective potential. Many issues related to these models are not fully understood. Large-deviations type questions for the homogenization and a central limit theorem type result for gases would provide us with valuable information about the corresponding microscopic models. Also, simplified models for coagulation phenomenon should help us to discover the rules governing the mysterious interaction between gels and sols.Our world appears differently at different scales! For example a fluid or a gas is a collection of an enormous number of molecules that collide incessantly and move erratically without any particular aim. How do these molecules then manage to organize themselves in such a way as to form a flow pattern on a large scale? Roughly the reason is that the local conservation laws impose constraints not immediately visible on the microscopic scale. As an another example, consider a solid to which further material sticks from the ambient atmosphere. The process of the attachment is a function of a huge variety of growth mechanisms depending on the materials involved, their temperature, composition, etc. Following the tradition of statistical mechanics, one studies simplified models which nevertheless captures some of the essential physics.The investigator's research concerns the relationship between the microscopic structure and the macroscopic behavior of fluids, gases and crystals. The analysis of the mathematical models consisting of a large number of components is proved to be useful in understanding the intricate behavior of our microscopic world such as the formation of crystals, the emergence of clots in blood, the roughness of the surface boundary of solids and occurrence of shocks in fluids.
建立微观世界与宏观行为之间的联系是统计力学中一个突出而长期研究的问题。研究人员的研究涉及与气体的演化,凝胶和晶体的形成以及具有随机势的哈密顿系统相关的随机和确定性模型。作为第一步,推导出这样的随机模型的宏观演化的偏微分方程。粗略地说,经过适当的尺度变换,气体中的粒子密度在掠射碰撞下收敛于朗道方程的解,含杂质的粗糙界面由Hamilton-Jacobi偏微分方程均匀化为齐次Hamilton-Jacobi方程,具有随机势的粒子链由有效势控制.与这些模型相关的许多问题尚未完全理解。大偏差类型的问题的均匀化和中心极限定理类型的气体的结果将为我们提供有价值的信息,相应的微观模型。此外,凝结现象的简化模型应该有助于我们发现控制凝胶和溶胶之间神秘相互作用的规则。例如,流体或气体是大量分子的集合,这些分子不停地碰撞,不规则地运动,没有任何特定的目标。那么这些分子又是如何组织起来,形成大规模的流动模式的呢? 大致的原因是,局部守恒定律施加的约束在微观尺度上并不直接可见。作为另一个例子,考虑固体,其他材料从环境大气粘到该固体上。 附着的过程是一个巨大的各种各样的生长机制的函数,这取决于所涉及的材料,它们的温度,成分等。遵循统计力学的传统,人们研究简化的模型,但捕获一些基本的物理。研究人员的研究关注流体,气体和晶体的微观结构和宏观行为之间的关系。由大量组件组成的数学模型的分析被证明是有用的,在理解我们的微观世界的复杂行为,如晶体的形成,血液中凝块的出现,固体表面边界的粗糙度和流体中的冲击的发生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fraydoun Rezakhanlou其他文献
Evolution of tagged particles in non-reversible particle systems
- DOI:
10.1007/bf02099734 - 发表时间:
1994-10-01 - 期刊:
- 影响因子:2.600
- 作者:
Fraydoun Rezakhanlou - 通讯作者:
Fraydoun Rezakhanlou
The Random Arnold Conjecture: A New Probabilistic Conley-Zehnder Theory for Symplectic Maps
- DOI:
10.1007/s00220-024-05160-x - 发表时间:
2025-01-11 - 期刊:
- 影响因子:2.600
- 作者:
Álvaro Pelayo;Fraydoun Rezakhanlou - 通讯作者:
Fraydoun Rezakhanlou
Scalar conservation laws with monotone pure-jump Markov initial conditions
- DOI:
10.1007/s00440-015-0648-2 - 发表时间:
2015-07-29 - 期刊:
- 影响因子:1.600
- 作者:
David C. Kaspar;Fraydoun Rezakhanlou - 通讯作者:
Fraydoun Rezakhanlou
Kinetic Statistics of Scalar Conservation Laws with Piecewise-Deterministic Markov Process Data
- DOI:
10.1007/s00205-020-01508-4 - 发表时间:
2020-03-20 - 期刊:
- 影响因子:2.400
- 作者:
David C. Kaspar;Fraydoun Rezakhanlou - 通讯作者:
Fraydoun Rezakhanlou
A Stochastic Model Associated with Enskog Equation and Its Kinetic Limit
- DOI:
10.1007/s00220-002-0739-7 - 发表时间:
2003-01-01 - 期刊:
- 影响因子:2.600
- 作者:
Fraydoun Rezakhanlou - 通讯作者:
Fraydoun Rezakhanlou
Fraydoun Rezakhanlou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fraydoun Rezakhanlou', 18)}}的其他基金
Probabilistic Methods in Symplectic Geometry and Fluid Mechanics
辛几何和流体力学中的概率方法
- 批准号:
1407723 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collective Behavior of Stochastic Systems
随机系统的集体行为
- 批准号:
0707890 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Homogenizations Continuum Limits and Kinetic Limits for Stochastic Models
随机模型的均质化连续体极限和动力学极限
- 批准号:
0072666 - 财政年份:2000
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Mathematical Sciences: Interacting Particle Systems and Hydrodynamics
数学科学:相互作用的粒子系统和流体动力学
- 批准号:
9424270 - 财政年份:1995
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Mathematical Sciences: Infinite Particle Systems and Hydrodynamics
数学科学:无限粒子系统和流体动力学
- 批准号:
9208490 - 财政年份:1992
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
Measurement of L2 pronunciation deviation and L2 listening disfluency and its application to prosody training for smooth international communication
二语发音偏差和二语听力不流利度测量及其在国际交流顺畅韵律训练中的应用
- 批准号:
23K17459 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Large deviation estimates for occupation times of intermittent maps
间歇地图占用时间的大偏差估计
- 批准号:
23K19010 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Quantifying a deviation between tsunami inundation and sedimentation by numerical experiments focusing on "slow tsunamis"
通过以“慢海啸”为中心的数值实验来量化海啸淹没和沉积之间的偏差
- 批准号:
23K13177 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Predicting psychosis risk in youth using a novel structural neuroimaging score that measures deviation from normative development. Can we bring it to communities using portable, low-field MRI?
使用一种新颖的结构神经影像评分来预测青少年的精神病风险,该评分可测量偏离规范发展的情况。
- 批准号:
10435204 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Large Deviation Principles for Coulomb-Type Flows
库仑型流动的大偏差原理
- 批准号:
557776-2021 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Postgraduate Scholarships - Doctoral
Large deviation principle and metastability for lattice gas
晶格气体大偏差原理及亚稳态
- 批准号:
22K13929 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Predicting psychosis risk in youth using a novel structural neuroimaging score that measures deviation from normative development. Can we bring it to communities using portable, low-field MRI?
使用一种新颖的结构神经影像评分来预测青少年的精神病风险,该评分可测量偏离规范发展的情况。
- 批准号:
10614565 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
DMS-EPSRC Sharp Large Deviation Estimates of Fluctuations in Stochastic Hydrodynamic Systems
随机流体动力系统波动的 DMS-EPSRC 急剧大偏差估计
- 批准号:
EP/V013319/1 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Large Deviation Principles for Coulomb-Type Flows
库仑型流动的大偏差原理
- 批准号:
557776-2021 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Postgraduate Scholarships - Doctoral
DMS-EPSRC Collaborative Research: Sharp Large Deviation Estimates of Fluctuations in Stochastic Hydrodynamic Systems
DMS-EPSRC 合作研究:随机水动力系统波动的急剧大偏差估计
- 批准号:
2012510 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant














{{item.name}}会员




