Probabilistic Methods in Symplectic Geometry and Fluid Mechanics
辛几何和流体力学中的概率方法
基本信息
- 批准号:1407723
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-15 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our world appears differently at different scales! For example a fluid is a collection of an enormous number of molecules that collide incessantly and move erratically without any particular aim. How do these molecules then manage to organize themselves in such a way as to form a flow pattern on a large scale? As another example, how fast the clotting (coagulation) should occur for a liquid (such as blood) to turn to a gel? The investigator's research concerns the relationship between the microscopic structure and the macroscopic behavior of fluids. The analysis of the mathematical models consisting of a large number of interacting particles is proved to be useful in understanding the intricate behavior of our microscopic world. The investigator also emphasizes on applying geometric and probabilistic ideas in order to develop new insights into complex dynamics of fluids. The proposal addresses the scaling and collective behavior of various stochastic and deterministic models that are of interest in statistical mechanics and differential geometry. These models are either formulated as interacting particle systems, partial differential equations or variational problems. In particular, the proposal suggests applying geometric and probabilistic ideas to study fluid equations. Also, Optimal Transport type problems are proposed for symplectic and contact forms that could play a role in understanding fluid equations. As another application of probabilistic ideas in differential geometry, we propose to study the set of fixed points for stochastic symplectic maps that appear as the flows associated with models in celestial mechanics. The proposal also formulates precise conjectures for particle systems modeling the phenomena of coagulation and formation of gels.
我们的世界在不同的尺度下看起来不同!例如,流体是大量分子的集合,这些分子不停地碰撞,不规则地运动,没有任何特定的目标。那么这些分子又是如何组织起来,形成大规模的流动模式的呢? 作为另一个例子,对于液体(如血液)转变为凝胶,凝结(凝固)应该发生多快?研究者的研究涉及流体的微观结构和宏观行为之间的关系。由大量相互作用粒子组成的数学模型的分析被证明是有用的,在理解我们的微观世界的复杂行为。研究者还强调应用几何和概率思想,以发展对复杂流体动力学的新见解。该提案涉及统计力学和微分几何中感兴趣的各种随机和确定性模型的标度和集体行为。这些模型可以表述为相互作用的粒子系统,偏微分方程或变分问题。特别是,该提案建议应用几何和概率思想来研究流体方程。此外,最佳运输型问题提出了辛和接触形式,可以发挥作用,在理解流体方程。作为概率思想在微分几何中的另一个应用,我们建议研究随机辛映射的不动点集,这些映射表现为与天体力学模型相关的流。该提案还制定了精确的粒子系统建模的凝聚和凝胶形成的现象。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fraydoun Rezakhanlou其他文献
Evolution of tagged particles in non-reversible particle systems
- DOI:
10.1007/bf02099734 - 发表时间:
1994-10-01 - 期刊:
- 影响因子:2.600
- 作者:
Fraydoun Rezakhanlou - 通讯作者:
Fraydoun Rezakhanlou
The Random Arnold Conjecture: A New Probabilistic Conley-Zehnder Theory for Symplectic Maps
- DOI:
10.1007/s00220-024-05160-x - 发表时间:
2025-01-11 - 期刊:
- 影响因子:2.600
- 作者:
Álvaro Pelayo;Fraydoun Rezakhanlou - 通讯作者:
Fraydoun Rezakhanlou
Scalar conservation laws with monotone pure-jump Markov initial conditions
- DOI:
10.1007/s00440-015-0648-2 - 发表时间:
2015-07-29 - 期刊:
- 影响因子:1.600
- 作者:
David C. Kaspar;Fraydoun Rezakhanlou - 通讯作者:
Fraydoun Rezakhanlou
Kinetic Statistics of Scalar Conservation Laws with Piecewise-Deterministic Markov Process Data
- DOI:
10.1007/s00205-020-01508-4 - 发表时间:
2020-03-20 - 期刊:
- 影响因子:2.400
- 作者:
David C. Kaspar;Fraydoun Rezakhanlou - 通讯作者:
Fraydoun Rezakhanlou
A Stochastic Model Associated with Enskog Equation and Its Kinetic Limit
- DOI:
10.1007/s00220-002-0739-7 - 发表时间:
2003-01-01 - 期刊:
- 影响因子:2.600
- 作者:
Fraydoun Rezakhanlou - 通讯作者:
Fraydoun Rezakhanlou
Fraydoun Rezakhanlou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fraydoun Rezakhanlou', 18)}}的其他基金
Large Deviation, Kinetic Limit and Gelation
大偏差、动力学极限和凝胶化
- 批准号:
1106526 - 财政年份:2011
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collective Behavior of Stochastic Systems
随机系统的集体行为
- 批准号:
0707890 - 财政年份:2007
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Homogenizations Continuum Limits and Kinetic Limits for Stochastic Models
随机模型的均质化连续体极限和动力学极限
- 批准号:
0072666 - 财政年份:2000
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Mathematical Sciences: Interacting Particle Systems and Hydrodynamics
数学科学:相互作用的粒子系统和流体动力学
- 批准号:
9424270 - 财政年份:1995
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Mathematical Sciences: Infinite Particle Systems and Hydrodynamics
数学科学:无限粒子系统和流体动力学
- 批准号:
9208490 - 财政年份:1992
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Floer for Three: Symplectic Methods in Low-Dimensional Topology
三人花:低维拓扑中的辛方法
- 批准号:
2204214 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Symplectic methods in infinite-dimensional systems (B06)
无限维系统中的辛方法(B06)
- 批准号:
331187494 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
CRC/Transregios
Floer homological methods in symplectic geometry and applications
辛几何中的Floer同调方法及其应用
- 批准号:
252380623 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Research Grants
Cohomological methods in symplectic topology
辛拓扑中的上同调方法
- 批准号:
1005288 - 财政年份:2010
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Computational methods in symplectic topology
辛拓扑的计算方法
- 批准号:
356470-2007 - 财政年份:2007
- 资助金额:
$ 25万 - 项目类别:
University Undergraduate Student Research Awards
Symplectic methods in the analysis of symmetric spaces
对称空间分析中的辛方法
- 批准号:
0701198 - 财政年份:2007
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Elliptic and topological methods in symplectic geometry, and Hamiltonian systems
辛几何中的椭圆和拓扑方法以及哈密顿系统
- 批准号:
92913-1996 - 财政年份:2000
- 资助金额:
$ 25万 - 项目类别:
Discovery Grants Program - Individual
Elliptic and topological methods in symplectic geometry, and Hamiltonian systems
辛几何中的椭圆和拓扑方法以及哈密顿系统
- 批准号:
92913-1996 - 财政年份:1999
- 资助金额:
$ 25万 - 项目类别:
Discovery Grants Program - Individual
Elliptic and topological methods in symplectic geometry, and Hamiltonian systems
辛几何中的椭圆和拓扑方法以及哈密顿系统
- 批准号:
92913-1996 - 财政年份:1998
- 资助金额:
$ 25万 - 项目类别:
Discovery Grants Program - Individual
Elliptic and topological methods in symplectic geometry, and Hamiltonian systems
辛几何中的椭圆和拓扑方法以及哈密顿系统
- 批准号:
92913-1996 - 财政年份:1997
- 资助金额:
$ 25万 - 项目类别:
Discovery Grants Program - Individual