Theory and Applications of Exponential Asymptotics
指数渐进理论与应用
基本信息
- 批准号:9704968
- 负责人:
- 金额:$ 3.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-15 至 1999-08-05
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT Costin Costin will work on constructing a theory of analyzable functions. Obtained by taking a closure of analytic functions with respect to function operations (algebraic operations, including division, composition, differentiation, integration, etc.) they preserve many analytic function properties, including unique representation by expansions (formalizability) and permanence of relations. In addition to the intrinsic interest in exploring the limits of formalizability, there is a major practical interest in reconstructing actual solutions from formal expansions for a wide class of equations. A complete theory of analyzable functions is likely to have an impact in many branches of pure and applied analysis. Costin has carried out this construction rigorously for functions arising as solutions to linear or nonlinear differential systems near generic singularities. Costin will use new techniques in the classification of nonlinear differential systems near irregular singularities, up to analytic equivalence, in providing sharp information on the nature and location of singularities of nonlinear systems, in the study of solvability in closed form of equations, in solving connection problems and in justifying and improving hyper-asymptotic numerical methods. The technique will also be extended to cover PDE's and difference equations. Asymptotic analysis is an important method of investigation in complex systems. In many important cases however, the quantities of interest are influenced by parameters too small to be controlled by classical asymptotics. The field of exponential asymptotics has been introduced as a successful theoretical and computational framework to deal with these situations and applied in problems ranging from number theory to optics and quantum mechanics. The present project is aimed at a rigorous foundation of the field, at applying its techniques to the study of differential or difference systems, as well as at extending and improving the computational methods of this new theory.
摘要 Costin Costin将致力于构建可分析函数的理论。 通过取解析函数关于 函数运算(代数运算,包括除法, 组成、分化、整合等)它们保留了许多 解析函数属性,包括通过 关系的扩展(形式化)和持久性。除了对探索形式化极限的内在兴趣之外, 有一个主要的实际利益,在重建实际的 从形式展开的解决方案,为广泛的一类方程。 一个完整的可分析函数理论很可能有一个 影响了纯分析和应用分析的许多分支。 Costin严格执行了这一功能建设 作为线性或非线性微分系统的解出现 类属奇点附近Costin将使用新技术, 非线性非正则微分系统的分类 奇点,直到解析等价,在提供尖锐的 关于非线性系统奇异性的性质和位置的信息 系统,在封闭形式的方程的可解性的研究,在解决连接问题,并在证明和改善 超渐近数值方法 该技术还将 扩展到涵盖偏微分方程和差分方程。 渐近分析是研究复杂系统的一种重要方法。然而,在许多重要的情况下, 感兴趣的量受太小的参数的影响 被经典渐近控制。指数渐近领域已经被引入作为一个成功的理论和计算框架来处理这些情况,并应用于从数论到光学和量子力学的问题。本项目的目的是严格的基础领域,在应用其技术的研究微分或差分系统,以及在扩展和改进的计算方法,这一新的理论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ovidiu Costin其他文献
Foundational aspects of singular integrals
- DOI:
10.1016/j.jfa.2014.09.005 - 发表时间:
2014-12-15 - 期刊:
- 影响因子:
- 作者:
Ovidiu Costin;Harvey M. Friedman - 通讯作者:
Harvey M. Friedman
Decay versus survival of a localized state subjected to harmonic forcing: exact results
受到谐波强迫的局部状态的衰变与生存:精确结果
- DOI:
10.1088/0305-4470/35/42/305 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
A. Rokhlenko;Ovidiu Costin;J. Lebowitz - 通讯作者:
J. Lebowitz
A ug 2 00 6 Nonperturbative analysis of a model quantum system under time periodic forcing
A ug 2 00 6 时间周期强迫下模型量子系统的非微扰分析
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Ovidiu Costin;R. Costin;J. Lebowitz;A. Rokhlenko - 通讯作者:
A. Rokhlenko
The blockage problem
堵塞问题
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Ovidiu Costin;J. Lebowitz;E. Speer;A. Troiani - 通讯作者:
A. Troiani
Behavior of lacunary series at the natural boundary
自然边界处的空隙系列的行为
- DOI:
10.1016/j.aim.2009.06.011 - 发表时间:
2008 - 期刊:
- 影响因子:1.7
- 作者:
Ovidiu Costin;Min Huang - 通讯作者:
Min Huang
Ovidiu Costin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ovidiu Costin', 18)}}的其他基金
Non-Perturbative Analysis of Physical and Mathematical Models
物理和数学模型的非微扰分析
- 批准号:
2206241 - 财政年份:2022
- 资助金额:
$ 3.52万 - 项目类别:
Standard Grant
Development of Non-Perturbative Approaches to Partial Differential Equations Arising in Physical Applications
物理应用中出现的偏微分方程的非微扰方法的发展
- 批准号:
1515755 - 财政年份:2015
- 资助金额:
$ 3.52万 - 项目类别:
Continuing Grant
Borel Summation and Applications to PDEs
Borel 求和及其在偏微分方程中的应用
- 批准号:
0807266 - 财政年份:2008
- 资助金额:
$ 3.52万 - 项目类别:
Standard Grant
Structure of Solutions of the Time Dependent Schroedinger Equation and of Certain Classes of Evolution Nonlinear PDEs
瞬态薛定谔方程和某些类演化非线性偏微分方程解的结构
- 批准号:
0600369 - 财政年份:2006
- 资助金额:
$ 3.52万 - 项目类别:
Continuing grant
Collaborative Research: Nonlinear PDE's and Integro-Differential Equations in the Complex Plane
合作研究:复平面上的非线性偏微分方程和积分微分方程
- 批准号:
0601226 - 财政年份:2005
- 资助金额:
$ 3.52万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear PDE's and Integro-Differential Equations in the Complex Plane
合作研究:复平面上的非线性偏微分方程和积分微分方程
- 批准号:
0406193 - 财政年份:2004
- 资助金额:
$ 3.52万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear PDEs and Integro-Differential Equations in the Complex Plane
合作研究:复平面上的非线性偏微分方程和积分微分方程
- 批准号:
0103807 - 财政年份:2001
- 资助金额:
$ 3.52万 - 项目类别:
Standard Grant
Theory and Applications of Exponential Asymptotics
指数渐进理论与应用
- 批准号:
9996365 - 财政年份:1998
- 资助金额:
$ 3.52万 - 项目类别:
Standard Grant
相似国自然基金
Applications of AI in Market Design
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
相似海外基金
New developments in applications of exponential sums in number theory
指数和在数论中应用的新进展
- 批准号:
19K23402 - 财政年份:2019
- 资助金额:
$ 3.52万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Exponential motivic homotopy theory, foliations and applications
指数本征同伦理论、叶状结构及应用
- 批准号:
405466915 - 财政年份:2018
- 资助金额:
$ 3.52万 - 项目类别:
Priority Programmes
New Exponential Integrators and Applications
新的指数积分器和应用
- 批准号:
1115978 - 财政年份:2011
- 资助金额:
$ 3.52万 - 项目类别:
Continuing Grant
Developments of applications of the double exponential transformation
双指数变换的应用进展
- 批准号:
18560063 - 财政年份:2006
- 资助金额:
$ 3.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exponential families in R(d)-(biological) applications of the inverse Gaussian distribution
逆高斯分布的 R(d)-(生物)应用中的指数族
- 批准号:
3093-2001 - 财政年份:2004
- 资助金额:
$ 3.52万 - 项目类别:
Discovery Grants Program - Individual
Exponential families in R(d)-(biological) applications of the inverse Gaussian distribution
逆高斯分布的 R(d)-(生物)应用中的指数族
- 批准号:
3093-2001 - 财政年份:2003
- 资助金额:
$ 3.52万 - 项目类别:
Discovery Grants Program - Individual
Exponential families in R(d)-(biological) applications of the inverse Gaussian distribution
逆高斯分布的 R(d)-(生物)应用中的指数族
- 批准号:
3093-2001 - 财政年份:2002
- 资助金额:
$ 3.52万 - 项目类别:
Discovery Grants Program - Individual
Tauberian theorems of exponential type and its applications to probability theory
指数型陶伯定理及其在概率论中的应用
- 批准号:
13640104 - 财政年份:2001
- 资助金额:
$ 3.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exponential families in R(d)-(biological) applications of the inverse Gaussian distribution
逆高斯分布的 R(d)-(生物)应用中的指数族
- 批准号:
3093-2001 - 财政年份:2001
- 资助金额:
$ 3.52万 - 项目类别:
Discovery Grants Program - Individual
Exponential families in R(d)-(biological) applications of the inverse Gaussian distribution
逆高斯分布的 R(d)-(生物)应用中的指数族
- 批准号:
3093-1997 - 财政年份:2000
- 资助金额:
$ 3.52万 - 项目类别:
Discovery Grants Program - Individual