Borel Summation and Applications to PDEs
Borel 求和及其在偏微分方程中的应用
基本信息
- 批准号:0807266
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project focuses on further development of new and constructive techniques for proving existence of solutions to nonlinear partial differential equations, with special emphasis on the three-dimensional Navier-Stokes system, and determining their global and asymptotic properties. The methods are based on recent advances in Borel-Laplace regularization and summability.Nonlinear partial differential equations are essential modeling tools in a wide range of problems in physics, chemistry, biology and other sciences. Understanding their solutions is a key tool in interpreting and predicting physical phenomena. The project develops a new approach and methods for this scientific enterprise.
该项目的重点是进一步发展新的和建设性的技术来证明非线性偏微分方程解的存在性,特别是三维Navier-Stokes系统,并确定其全局和渐近性质。这些方法基于Borel-Laplace正则化和可和性方面的最新进展。非线性偏微分方程组是物理、化学、生物和其他科学中广泛应用的建模工具。理解它们的解决方案是解释和预测物理现象的关键工具。该项目为这项科学事业开辟了一条新的途径和方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ovidiu Costin其他文献
Foundational aspects of singular integrals
- DOI:
10.1016/j.jfa.2014.09.005 - 发表时间:
2014-12-15 - 期刊:
- 影响因子:
- 作者:
Ovidiu Costin;Harvey M. Friedman - 通讯作者:
Harvey M. Friedman
Decay versus survival of a localized state subjected to harmonic forcing: exact results
受到谐波强迫的局部状态的衰变与生存:精确结果
- DOI:
10.1088/0305-4470/35/42/305 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
A. Rokhlenko;Ovidiu Costin;J. Lebowitz - 通讯作者:
J. Lebowitz
A ug 2 00 6 Nonperturbative analysis of a model quantum system under time periodic forcing
A ug 2 00 6 时间周期强迫下模型量子系统的非微扰分析
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Ovidiu Costin;R. Costin;J. Lebowitz;A. Rokhlenko - 通讯作者:
A. Rokhlenko
The blockage problem
堵塞问题
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Ovidiu Costin;J. Lebowitz;E. Speer;A. Troiani - 通讯作者:
A. Troiani
Behavior of lacunary series at the natural boundary
自然边界处的空隙系列的行为
- DOI:
10.1016/j.aim.2009.06.011 - 发表时间:
2008 - 期刊:
- 影响因子:1.7
- 作者:
Ovidiu Costin;Min Huang - 通讯作者:
Min Huang
Ovidiu Costin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ovidiu Costin', 18)}}的其他基金
Non-Perturbative Analysis of Physical and Mathematical Models
物理和数学模型的非微扰分析
- 批准号:
2206241 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Development of Non-Perturbative Approaches to Partial Differential Equations Arising in Physical Applications
物理应用中出现的偏微分方程的非微扰方法的发展
- 批准号:
1515755 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Continuing Grant
Structure of Solutions of the Time Dependent Schroedinger Equation and of Certain Classes of Evolution Nonlinear PDEs
瞬态薛定谔方程和某些类演化非线性偏微分方程解的结构
- 批准号:
0600369 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Continuing grant
Collaborative Research: Nonlinear PDE's and Integro-Differential Equations in the Complex Plane
合作研究:复平面上的非线性偏微分方程和积分微分方程
- 批准号:
0601226 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Nonlinear PDE's and Integro-Differential Equations in the Complex Plane
合作研究:复平面上的非线性偏微分方程和积分微分方程
- 批准号:
0406193 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Nonlinear PDEs and Integro-Differential Equations in the Complex Plane
合作研究:复平面上的非线性偏微分方程和积分微分方程
- 批准号:
0103807 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Standard Grant
Theory and Applications of Exponential Asymptotics
指数渐进理论与应用
- 批准号:
9996365 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Standard Grant
Theory and Applications of Exponential Asymptotics
指数渐进理论与应用
- 批准号:
9704968 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Splicing Summation Formulae and Triple Product L-Functions
拼接求和公式和三重积 L 函数
- 批准号:
2400550 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Functional Underpinnings of Summation-By-Parts Finite Differences
有限差分部分求和的函数基础
- 批准号:
EP/V002929/1 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grant
Optimization of Summation-by-Parts Operators for Minimum Solution Error
优化分部求和算子以获得最小解误差
- 批准号:
556824-2020 - 财政年份:2020
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Influence of spatial summation on the illusory movement induced by tendon vibrations
空间求和对肌腱振动引起的幻觉运动的影响
- 批准号:
19K20105 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development and Investigation of Efficient High-Order Generalized Summation-By-Parts Operators for Computational Fluid Dynamics
计算流体动力学高效高阶广义分部求和算子的开发和研究
- 批准号:
504436-2017 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A Comparative Evaluation of Discontinuous-Galerkin and Summation-by-Parts Methods on Unstructured Gr
非结构化网格的间断伽辽金法与分部求和法的比较评价
- 批准号:
540024-2019 - 财政年份:2019
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Summation Formulae and Triple Product L-functions in Higher Rank
高阶求和公式和三重积 L 函数
- 批准号:
1901883 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Development and Investigation of Efficient High-Order Generalized Summation-By-Parts Operators for Computational Fluid Dynamics
计算流体动力学高效高阶广义分部求和算子的开发和研究
- 批准号:
504436-2017 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Circuitry underlying response summation in mouse and primate: Theory and experiment
小鼠和灵长类动物响应总和的电路:理论与实验
- 批准号:
9792300 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Circuitry underlying response summation in mouse and primate: Theory and experiment
小鼠和灵长类动物响应总和的电路:理论与实验
- 批准号:
9975922 - 财政年份:2018
- 资助金额:
-- - 项目类别:














{{item.name}}会员




