Theory and Applications of Exponential Asymptotics
指数渐进理论与应用
基本信息
- 批准号:9996365
- 负责人:
- 金额:$ 1.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-10-01 至 2000-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ovidiu Costin其他文献
Foundational aspects of singular integrals
- DOI:
10.1016/j.jfa.2014.09.005 - 发表时间:
2014-12-15 - 期刊:
- 影响因子:
- 作者:
Ovidiu Costin;Harvey M. Friedman - 通讯作者:
Harvey M. Friedman
Decay versus survival of a localized state subjected to harmonic forcing: exact results
受到谐波强迫的局部状态的衰变与生存:精确结果
- DOI:
10.1088/0305-4470/35/42/305 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
A. Rokhlenko;Ovidiu Costin;J. Lebowitz - 通讯作者:
J. Lebowitz
A ug 2 00 6 Nonperturbative analysis of a model quantum system under time periodic forcing
A ug 2 00 6 时间周期强迫下模型量子系统的非微扰分析
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Ovidiu Costin;R. Costin;J. Lebowitz;A. Rokhlenko - 通讯作者:
A. Rokhlenko
The blockage problem
堵塞问题
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Ovidiu Costin;J. Lebowitz;E. Speer;A. Troiani - 通讯作者:
A. Troiani
Behavior of lacunary series at the natural boundary
自然边界处的空隙系列的行为
- DOI:
10.1016/j.aim.2009.06.011 - 发表时间:
2008 - 期刊:
- 影响因子:1.7
- 作者:
Ovidiu Costin;Min Huang - 通讯作者:
Min Huang
Ovidiu Costin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ovidiu Costin', 18)}}的其他基金
Non-Perturbative Analysis of Physical and Mathematical Models
物理和数学模型的非微扰分析
- 批准号:
2206241 - 财政年份:2022
- 资助金额:
$ 1.12万 - 项目类别:
Standard Grant
Development of Non-Perturbative Approaches to Partial Differential Equations Arising in Physical Applications
物理应用中出现的偏微分方程的非微扰方法的发展
- 批准号:
1515755 - 财政年份:2015
- 资助金额:
$ 1.12万 - 项目类别:
Continuing Grant
Borel Summation and Applications to PDEs
Borel 求和及其在偏微分方程中的应用
- 批准号:
0807266 - 财政年份:2008
- 资助金额:
$ 1.12万 - 项目类别:
Standard Grant
Structure of Solutions of the Time Dependent Schroedinger Equation and of Certain Classes of Evolution Nonlinear PDEs
瞬态薛定谔方程和某些类演化非线性偏微分方程解的结构
- 批准号:
0600369 - 财政年份:2006
- 资助金额:
$ 1.12万 - 项目类别:
Continuing grant
Collaborative Research: Nonlinear PDE's and Integro-Differential Equations in the Complex Plane
合作研究:复平面上的非线性偏微分方程和积分微分方程
- 批准号:
0601226 - 财政年份:2005
- 资助金额:
$ 1.12万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear PDE's and Integro-Differential Equations in the Complex Plane
合作研究:复平面上的非线性偏微分方程和积分微分方程
- 批准号:
0406193 - 财政年份:2004
- 资助金额:
$ 1.12万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear PDEs and Integro-Differential Equations in the Complex Plane
合作研究:复平面上的非线性偏微分方程和积分微分方程
- 批准号:
0103807 - 财政年份:2001
- 资助金额:
$ 1.12万 - 项目类别:
Standard Grant
Theory and Applications of Exponential Asymptotics
指数渐进理论与应用
- 批准号:
9704968 - 财政年份:1997
- 资助金额:
$ 1.12万 - 项目类别:
Standard Grant
相似国自然基金
Applications of AI in Market Design
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
相似海外基金
New developments in applications of exponential sums in number theory
指数和在数论中应用的新进展
- 批准号:
19K23402 - 财政年份:2019
- 资助金额:
$ 1.12万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Exponential motivic homotopy theory, foliations and applications
指数本征同伦理论、叶状结构及应用
- 批准号:
405466915 - 财政年份:2018
- 资助金额:
$ 1.12万 - 项目类别:
Priority Programmes
New Exponential Integrators and Applications
新的指数积分器和应用
- 批准号:
1115978 - 财政年份:2011
- 资助金额:
$ 1.12万 - 项目类别:
Continuing Grant
Developments of applications of the double exponential transformation
双指数变换的应用进展
- 批准号:
18560063 - 财政年份:2006
- 资助金额:
$ 1.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exponential families in R(d)-(biological) applications of the inverse Gaussian distribution
逆高斯分布的 R(d)-(生物)应用中的指数族
- 批准号:
3093-2001 - 财政年份:2004
- 资助金额:
$ 1.12万 - 项目类别:
Discovery Grants Program - Individual
Exponential families in R(d)-(biological) applications of the inverse Gaussian distribution
逆高斯分布的 R(d)-(生物)应用中的指数族
- 批准号:
3093-2001 - 财政年份:2003
- 资助金额:
$ 1.12万 - 项目类别:
Discovery Grants Program - Individual
Exponential families in R(d)-(biological) applications of the inverse Gaussian distribution
逆高斯分布的 R(d)-(生物)应用中的指数族
- 批准号:
3093-2001 - 财政年份:2002
- 资助金额:
$ 1.12万 - 项目类别:
Discovery Grants Program - Individual
Tauberian theorems of exponential type and its applications to probability theory
指数型陶伯定理及其在概率论中的应用
- 批准号:
13640104 - 财政年份:2001
- 资助金额:
$ 1.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exponential families in R(d)-(biological) applications of the inverse Gaussian distribution
逆高斯分布的 R(d)-(生物)应用中的指数族
- 批准号:
3093-2001 - 财政年份:2001
- 资助金额:
$ 1.12万 - 项目类别:
Discovery Grants Program - Individual
Exponential families in R(d)-(biological) applications of the inverse Gaussian distribution
逆高斯分布的 R(d)-(生物)应用中的指数族
- 批准号:
3093-1997 - 财政年份:2000
- 资助金额:
$ 1.12万 - 项目类别:
Discovery Grants Program - Individual