Partial Differential Equations and Real Harmonic Analysis

偏微分方程和实调和分析

基本信息

  • 批准号:
    9706497
  • 负责人:
  • 金额:
    $ 7.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-07-15 至 2000-06-30
  • 项目状态:
    已结题

项目摘要

9706497 Gutierrez The problems in this project concentrate on the study of the behavior of solutions of degenerate elliptic and parabolic equations in non-divergence form with non-smooth coefficients. Such coefficients may either vanish, be infinite, or both. A primary goal is to study the validity of the Harnack principle for nonnegative solutions and estimates of the second derivatives of solutions. Though the theory for divergence form equations with measurable coefficients has been the focus of research during recent years, the corresponding theory for non-divergence form equations is much less developed. Non-divergence equations are natural in Probability, Control Theory, and Finance. The results known in this direction concern either smooth coefficients or the strictly elliptic case, but the methods developed for those cases do not apply to the problems proposed. In some cases the geometry needed to study the linear equation is given by the Monge-Ampere equation, a fully nonlinear partial differential equation. This approach requires the study of the shape and invariance properties of the level sets of solutions to the Monge-Ampere equation, and further work will continue along these lines. The basis and methodology that will be used to solve this set of problems are via the maximum principle, localization, and nonlinear variants of the Calderon-Zygmund decomposition. This mathematical research is in the field of partial differential equations, linear and nonlinear. These equations are the principal classical tool of the applications of mathematics to the physical world. The project has a strong connection with Harmonic Analysis in Euclidean space, a subject that has flourished during the second half of the twentieth century and that has become an indispensable tool to provide qualitative and quantitative information about the solutions of partial differential equations. Some equations considered in the project are used in models of atmospheric a nd oceanic flows and in the description of the diffusion of a gas in a porous medium.
9706497 Gutierrez 本项目的主要内容是研究具有非光滑系数的非散度型退化椭圆方程和抛物方程解的性质。这样的系数可能为零,也可能为无穷大,或者两者兼而有之。 一个主要的目标是研究的有效性的Harnack原则的非负解和估计的二阶导数的解决方案。虽然可测系数的散度型方程的理论是近年来的研究热点,但非散度型方程的理论却发展得很少。非发散方程在概率论、控制论和金融学中是很自然的。 在这个方向上已知的结果涉及光滑系数或严格椭圆的情况下,但这些情况下开发的方法不适用于提出的问题。 在某些情况下,研究线性方程所需的几何是由蒙赫-安培方程给出的,这是一个完全非线性的偏微分方程。 这种方法需要研究的形状和不变性性质的水平集的解决方案的蒙赫-安培方程,进一步的工作将继续沿着这些路线。 将用于解决这组问题的基础和方法是通过Calderon-Zygmund分解的最大值原理,局部化和非线性变体。 这个数学研究是在偏微分方程,线性和非线性领域。 这些方程是将数学应用于物理世界的主要经典工具。 该项目与欧几里德空间中的调和分析有着密切的联系,这是一个在二十世纪后半叶蓬勃发展的主题,已成为提供有关偏微分方程解的定性和定量信息的不可或缺的工具。 该项目中考虑的一些方程用于大气和海洋流动的模型以及描述气体在多孔介质中的扩散。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cristian Gutierrez其他文献

Inverted Linear Correlation Between the Catalytic Activity of Iron Phthalocyanines and the Formal Potential of the Catalyst in the Electrooxidation of l-Cysteine
  • DOI:
    10.1007/s12678-012-0097-y
  • 发表时间:
    2012-05-17
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Cristian Gutierrez;J. Francisco Silva;Jorge Pavez;Fethi Bedioui;José H. Zagal
  • 通讯作者:
    José H. Zagal

Cristian Gutierrez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cristian Gutierrez', 18)}}的其他基金

OP: Monge-Ampere type equations and geometric optics
OP:Monge-Ampere 型方程和几何光学
  • 批准号:
    1600578
  • 财政年份:
    2016
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Continuing Grant
Monge-Ampere-type equations and geometric optics
Monge-Ampere型方程和几何光学
  • 批准号:
    1201401
  • 财政年份:
    2012
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Continuing Grant
Nonlinear equations of Monge-Ampere type
Monge-Ampere型非线性方程
  • 批准号:
    0901430
  • 财政年份:
    2009
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Continuing Grant
Nonlinear Equations of Monge-Ampere type
Monge-Ampere型非线性方程组
  • 批准号:
    0610374
  • 财政年份:
    2006
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Standard Grant
NonLinear Equations of Monge-Ampere Type
Monge-Ampere型非线性方程
  • 批准号:
    0300004
  • 财政年份:
    2003
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Standard Grant
Nonlinear Equations of Monge-Ampere Type
Monge-Ampere型非线性方程组
  • 批准号:
    0070648
  • 财政年份:
    2000
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Weighted Norm Inequalities and Partial Differential Equations
数学科学:加权范数不等式和偏微分方程
  • 批准号:
    9003095
  • 财政年份:
    1990
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Standard Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
  • 批准号:
    2350129
  • 财政年份:
    2024
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Standard Grant
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
  • 批准号:
    2349575
  • 财政年份:
    2024
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Standard Grant
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
  • 批准号:
    2349794
  • 财政年份:
    2024
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Standard Grant
Interfaces, Degenerate Partial Differential Equations, and Convexity
接口、简并偏微分方程和凸性
  • 批准号:
    2348846
  • 财政年份:
    2024
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
  • 批准号:
    2424305
  • 财政年份:
    2024
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Continuing Grant
A new numerical analysis for partial differential equations with noise
带有噪声的偏微分方程的新数值分析
  • 批准号:
    DP220100937
  • 财政年份:
    2023
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Discovery Projects
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
  • 批准号:
    2307610
  • 财政年份:
    2023
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
  • 批准号:
    2343135
  • 财政年份:
    2023
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了