OP: Monge-Ampere type equations and geometric optics

OP:Monge-Ampere 型方程和几何光学

基本信息

  • 批准号:
    1600578
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Optical devices play very important roles in multiple practical applications, and many of these devices are built with lenses and mirrors. Traditionally, most optical designs have been rotationally symmetric because of manufacturing limitations and production costs. With the development of computer-controlled precision machines, optical devices that are not necessarily symmetric, called free-form or aspherical, can be manufactured. In particular, with the recent advances in additive or three-dimensional manufacturing, free-form lenses can also be made. The design of lenses and mirrors is currently made computationally with ray tracing (i.e., by software calculating the trajectory of the light rays), in which choices are based upon educated guesses. This project is concerned with the development of mathematical methods for the design of lenses, mirrors, and antennas. It provides a better understanding than past approaches of the design problems and enables one to adapt the solutions to the needs required for any specific application. It develops models that are physically more accurate than earlier ones and takes into account, for example, internal reflection. The project addresses theoretical aspects of nonlinear partial differential equations with concrete problems in optics and photonics. In addition, the principal investigator is concerned with the mathematical descriptions of the loss of energy due to bending in waveguides, chromatic aberration for lenses, and variations of refractive indices in materials, in particular, negative refraction. A part of the research concerns the development of an algorithm for the numerical calculation of lenses.The problems are described by partial differential equations involving the output and input intensities and other parameters depending on the models. The goals are concerned with existence, uniqueness, and regularity properties of the solutions. The methods used derive from the mathematical fields of optimal mass transportation, optimization, and nonlinear partial differential equations of a specific type, called Monge-Ampere-type equations. The techniques include lower and upper estimates of various gradient maps and strict convexity analysis. Partial differential equations appear naturally because the interface surface one looks for has the property that the ratio between the energy sent and received over a small area can be expressed in terms of the input and output energy densities. This yields an equation involving second derivatives of the unknown surface. The development of an algorithm for the numerical calculation of lenses requires establishing Lipschitz estimates for the associated functionals. Furthermore, as waveguides of size comparable to the wavelength of radiation are electromagnetic in nature, the proposal blends with the study of Maxwell's equations in discontinuous and anisotropic media.
光学器件在多种实际应用中起着非常重要的作用,许多光学器件都是由透镜和反射镜组成的。传统上,由于制造限制和生产成本,大多数光学设计都是旋转对称的。随着计算机控制的精密机器的发展,不一定是对称的光学器件,称为自由形式或非球面,可以制造。特别是,随着增材制造或三维制造的最新进展,自由形状的透镜也可以制造出来。透镜和反射镜的设计目前是通过光线追踪(即通过软件计算光线轨迹)进行计算的,其中的选择是基于有根据的猜测。这个项目关注的是设计透镜、反射镜和天线的数学方法的发展。与过去的方法相比,它提供了对设计问题的更好理解,并使解决方案能够适应任何特定应用程序所需的需求。它开发的模型在物理上比以前的模型更准确,并考虑了内部反射等因素。该项目涉及光学和光子学中具体问题的非线性偏微分方程的理论方面。此外,首席研究员还关注由于波导弯曲,透镜色差和材料折射率变化,特别是负折射引起的能量损失的数学描述。研究的一部分涉及透镜数值计算算法的开发。这些问题是用偏微分方程来描述的,它涉及到输出和输入强度以及依赖于模型的其他参数。目标涉及解的存在性、唯一性和正则性。所使用的方法源自数学领域的最优质量传输,优化和非线性偏微分方程的一种特殊类型,称为蒙日-安培型方程。这些技术包括各种梯度图的上下估计和严格的凸性分析。偏微分方程很自然地出现,因为人们寻找的界面表面具有这样的性质,即在小面积上发送和接收的能量之间的比率可以用输入和输出能量密度来表示。这就得到了一个包含未知曲面二阶导数的方程。透镜数值计算算法的发展需要建立相关泛函的利普希茨估计。此外,由于尺寸与辐射波长相当的波导本质上是电磁的,因此该建议与不连续和各向异性介质中麦克斯韦方程组的研究相结合。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cristian Gutierrez其他文献

Inverted Linear Correlation Between the Catalytic Activity of Iron Phthalocyanines and the Formal Potential of the Catalyst in the Electrooxidation of l-Cysteine
  • DOI:
    10.1007/s12678-012-0097-y
  • 发表时间:
    2012-05-17
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Cristian Gutierrez;J. Francisco Silva;Jorge Pavez;Fethi Bedioui;José H. Zagal
  • 通讯作者:
    José H. Zagal

Cristian Gutierrez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cristian Gutierrez', 18)}}的其他基金

Monge-Ampere-type equations and geometric optics
Monge-Ampere型方程和几何光学
  • 批准号:
    1201401
  • 财政年份:
    2012
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Nonlinear equations of Monge-Ampere type
Monge-Ampere型非线性方程
  • 批准号:
    0901430
  • 财政年份:
    2009
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Nonlinear Equations of Monge-Ampere type
Monge-Ampere型非线性方程组
  • 批准号:
    0610374
  • 财政年份:
    2006
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
NonLinear Equations of Monge-Ampere Type
Monge-Ampere型非线性方程
  • 批准号:
    0300004
  • 财政年份:
    2003
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Nonlinear Equations of Monge-Ampere Type
Monge-Ampere型非线性方程组
  • 批准号:
    0070648
  • 财政年份:
    2000
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Partial Differential Equations and Real Harmonic Analysis
偏微分方程和实调和分析
  • 批准号:
    9706497
  • 财政年份:
    1997
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Weighted Norm Inequalities and Partial Differential Equations
数学科学:加权范数不等式和偏微分方程
  • 批准号:
    9003095
  • 财政年份:
    1990
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant

相似国自然基金

复Monge-Ampere型方程的正则性和几何不等式
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
复Monge-Ampere方程解的局部正则性和奇异点集的研究
  • 批准号:
    12001512
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Minkowski问题及其相关Monge-Ampere方程专题研讨班
  • 批准号:
    12026412
  • 批准年份:
    2020
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
Minkwoski问题及其相关Monge-Ampere方程专题研讨班
  • 批准号:
    11926317
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
抛物型Monge-Ampere方程的整体解的存在性与解的局部估计
  • 批准号:
    11901018
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
退化Monge-Ampere 方程边值问题解的正则性研究
  • 批准号:
    11871470
  • 批准年份:
    2018
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
仿射技巧与Monge-Ampere型方程
  • 批准号:
    11871352
  • 批准年份:
    2018
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
Minkwoski问题及其相关Monge-Ampere方程专题研讨班
  • 批准号:
    11826014
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
Orlicz-Minkowski问题及相关的Monge-Ampere型方程
  • 批准号:
    11871432
  • 批准年份:
    2018
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目
具非线性梯度项的Monge-Ampere方程的大解
  • 批准号:
    11571295
  • 批准年份:
    2015
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似海外基金

Approximation of transport maps from local and non-local Monge-Ampere equations
根据局部和非局部 Monge-Ampere 方程近似输运图
  • 批准号:
    2308856
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Canonical Kahler metrics and complex Monge-Ampere equations
规范卡勒度量和复杂的 Monge-Ampere 方程
  • 批准号:
    2303508
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Monge-Ampere type equations and their applications
Monge-Ampere型方程及其应用
  • 批准号:
    FT220100368
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    ARC Future Fellowships
Singularity and regularity for Monge-Ampere type equations
Monge-Ampere 型方程的奇异性和正则性
  • 批准号:
    DP230100499
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Discovery Projects
A generalization of the Monge-Ampere equation to almost complex geometry and its new potential applications
蒙日-安培方程对几乎复杂几何的推广及其新的潜在应用
  • 批准号:
    21K13798
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Monge-Ampere equations and applications
Monge-Ampere 方程及其应用
  • 批准号:
    DP200101084
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
  • 项目类别:
    Discovery Projects
Complex Monge-Ampere Equations and the Calabi Flow
复杂的 Monge-Ampere 方程和卡拉比流
  • 批准号:
    1914719
  • 财政年份:
    2019
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
CAREER: Conformal Geometry and Monge-Ampere Type Equations
职业:共形几何和 Monge-Ampere 型方程
  • 批准号:
    1845033
  • 财政年份:
    2019
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Microlocal Analysis and Monge-Ampere Type Equations in Geometry
几何中的微局域分析和Monge-Ampere型方程
  • 批准号:
    1906370
  • 财政年份:
    2019
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Regularity Estimates for the Linearized Monge-Ampere and Degenerate Monge-Ampere Equations and Applications in Nonlinear Partial Differential Equations
线性蒙日安培方程和简并蒙日安培方程的正则估计及其在非线性偏微分方程中的应用
  • 批准号:
    1764248
  • 财政年份:
    2018
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了