OP: Monge-Ampere type equations and geometric optics
OP:Monge-Ampere 型方程和几何光学
基本信息
- 批准号:1600578
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Optical devices play very important roles in multiple practical applications, and many of these devices are built with lenses and mirrors. Traditionally, most optical designs have been rotationally symmetric because of manufacturing limitations and production costs. With the development of computer-controlled precision machines, optical devices that are not necessarily symmetric, called free-form or aspherical, can be manufactured. In particular, with the recent advances in additive or three-dimensional manufacturing, free-form lenses can also be made. The design of lenses and mirrors is currently made computationally with ray tracing (i.e., by software calculating the trajectory of the light rays), in which choices are based upon educated guesses. This project is concerned with the development of mathematical methods for the design of lenses, mirrors, and antennas. It provides a better understanding than past approaches of the design problems and enables one to adapt the solutions to the needs required for any specific application. It develops models that are physically more accurate than earlier ones and takes into account, for example, internal reflection. The project addresses theoretical aspects of nonlinear partial differential equations with concrete problems in optics and photonics. In addition, the principal investigator is concerned with the mathematical descriptions of the loss of energy due to bending in waveguides, chromatic aberration for lenses, and variations of refractive indices in materials, in particular, negative refraction. A part of the research concerns the development of an algorithm for the numerical calculation of lenses.The problems are described by partial differential equations involving the output and input intensities and other parameters depending on the models. The goals are concerned with existence, uniqueness, and regularity properties of the solutions. The methods used derive from the mathematical fields of optimal mass transportation, optimization, and nonlinear partial differential equations of a specific type, called Monge-Ampere-type equations. The techniques include lower and upper estimates of various gradient maps and strict convexity analysis. Partial differential equations appear naturally because the interface surface one looks for has the property that the ratio between the energy sent and received over a small area can be expressed in terms of the input and output energy densities. This yields an equation involving second derivatives of the unknown surface. The development of an algorithm for the numerical calculation of lenses requires establishing Lipschitz estimates for the associated functionals. Furthermore, as waveguides of size comparable to the wavelength of radiation are electromagnetic in nature, the proposal blends with the study of Maxwell's equations in discontinuous and anisotropic media.
光学器件在许多实际应用中起着非常重要的作用,并且这些器件中的许多都是用透镜和镜子构建的。传统上,由于制造限制和生产成本,大多数光学设计都是旋转对称的。随着计算机控制的精密机器的发展,可以制造出不一定对称的光学器件,称为自由曲面或非球面。特别地,随着增材或三维制造的最新进展,还可以制造自由形式的透镜。透镜和反射镜的设计目前是通过光线跟踪(即,通过软件计算光线的轨迹),其中选择基于有根据的猜测。这个项目关注的是透镜、反射镜和天线设计的数学方法的发展。它提供了一个更好的理解比过去的方法的设计问题,并使一个适应的解决方案所需的任何特定的应用程序。它开发的模型在物理上比以前的模型更准确,并考虑到了内部反射等因素。 该项目涉及非线性偏微分方程的理论方面,以及光学和光子学中的具体问题。 此外,主要研究者关注的是由于波导弯曲导致的能量损失的数学描述,透镜的色差,以及材料折射率的变化,特别是负折射。研究的一部分涉及透镜数值计算的算法的发展。问题由包含输出和输入强度以及依赖于模型的其他参数的偏微分方程描述。目标是关注的存在性,唯一性和正则性的解决方案。所使用的方法来自数学领域的最佳质量运输,优化和非线性偏微分方程的一个特定类型,称为蒙格安培型方程。该技术包括各种梯度映射的上下估计和严格的凸性分析。偏微分方程很自然地出现,因为人们寻找的界面具有这样的性质,即在小面积上发送和接收的能量之间的比率可以用输入和输出能量密度来表示。这就产生了一个涉及未知曲面的二阶导数的方程。透镜数值计算的算法的发展需要建立相关泛函的Lipschitz估计。此外,由于尺寸与辐射波长相当的波导本质上是电磁的,因此该提案与不连续和各向异性介质中的麦克斯韦方程组的研究融为一体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cristian Gutierrez其他文献
Inverted Linear Correlation Between the Catalytic Activity of Iron Phthalocyanines and the Formal Potential of the Catalyst in the Electrooxidation of l-Cysteine
- DOI:
10.1007/s12678-012-0097-y - 发表时间:
2012-05-17 - 期刊:
- 影响因子:2.800
- 作者:
Cristian Gutierrez;J. Francisco Silva;Jorge Pavez;Fethi Bedioui;José H. Zagal - 通讯作者:
José H. Zagal
Cristian Gutierrez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cristian Gutierrez', 18)}}的其他基金
Monge-Ampere-type equations and geometric optics
Monge-Ampere型方程和几何光学
- 批准号:
1201401 - 财政年份:2012
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Nonlinear equations of Monge-Ampere type
Monge-Ampere型非线性方程
- 批准号:
0901430 - 财政年份:2009
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Nonlinear Equations of Monge-Ampere type
Monge-Ampere型非线性方程组
- 批准号:
0610374 - 财政年份:2006
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
NonLinear Equations of Monge-Ampere Type
Monge-Ampere型非线性方程
- 批准号:
0300004 - 财政年份:2003
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Nonlinear Equations of Monge-Ampere Type
Monge-Ampere型非线性方程组
- 批准号:
0070648 - 财政年份:2000
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Partial Differential Equations and Real Harmonic Analysis
偏微分方程和实调和分析
- 批准号:
9706497 - 财政年份:1997
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Mathematical Sciences: Weighted Norm Inequalities and Partial Differential Equations
数学科学:加权范数不等式和偏微分方程
- 批准号:
9003095 - 财政年份:1990
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
相似国自然基金
复Monge-Ampere型方程的正则性和几何不等式
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
复Monge-Ampere方程解的局部正则性和奇异点集的研究
- 批准号:12001512
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Minkowski问题及其相关Monge-Ampere方程专题研讨班
- 批准号:12026412
- 批准年份:2020
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
Minkwoski问题及其相关Monge-Ampere方程专题研讨班
- 批准号:11926317
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
抛物型Monge-Ampere方程的整体解的存在性与解的局部估计
- 批准号:11901018
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
退化Monge-Ampere 方程边值问题解的正则性研究
- 批准号:11871470
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
仿射技巧与Monge-Ampere型方程
- 批准号:11871352
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
Minkwoski问题及其相关Monge-Ampere方程专题研讨班
- 批准号:11826014
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
Orlicz-Minkowski问题及相关的Monge-Ampere型方程
- 批准号:11871432
- 批准年份:2018
- 资助金额:52.0 万元
- 项目类别:面上项目
具非线性梯度项的Monge-Ampere方程的大解
- 批准号:11571295
- 批准年份:2015
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Approximation of transport maps from local and non-local Monge-Ampere equations
根据局部和非局部 Monge-Ampere 方程近似输运图
- 批准号:
2308856 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Canonical Kahler metrics and complex Monge-Ampere equations
规范卡勒度量和复杂的 Monge-Ampere 方程
- 批准号:
2303508 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Monge-Ampere type equations and their applications
Monge-Ampere型方程及其应用
- 批准号:
FT220100368 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
ARC Future Fellowships
Singularity and regularity for Monge-Ampere type equations
Monge-Ampere 型方程的奇异性和正则性
- 批准号:
DP230100499 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Discovery Projects
A generalization of the Monge-Ampere equation to almost complex geometry and its new potential applications
蒙日-安培方程对几乎复杂几何的推广及其新的潜在应用
- 批准号:
21K13798 - 财政年份:2021
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Monge-Ampere equations and applications
Monge-Ampere 方程及其应用
- 批准号:
DP200101084 - 财政年份:2020
- 资助金额:
$ 24万 - 项目类别:
Discovery Projects
Complex Monge-Ampere Equations and the Calabi Flow
复杂的 Monge-Ampere 方程和卡拉比流
- 批准号:
1914719 - 财政年份:2019
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
CAREER: Conformal Geometry and Monge-Ampere Type Equations
职业:共形几何和 Monge-Ampere 型方程
- 批准号:
1845033 - 财政年份:2019
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Microlocal Analysis and Monge-Ampere Type Equations in Geometry
几何中的微局域分析和Monge-Ampere型方程
- 批准号:
1906370 - 财政年份:2019
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Regularity Estimates for the Linearized Monge-Ampere and Degenerate Monge-Ampere Equations and Applications in Nonlinear Partial Differential Equations
线性蒙日安培方程和简并蒙日安培方程的正则估计及其在非线性偏微分方程中的应用
- 批准号:
1764248 - 财政年份:2018
- 资助金额:
$ 24万 - 项目类别:
Standard Grant














{{item.name}}会员




