Non-linear equations in analysis and geometry
分析和几何中的非线性方程
基本信息
- 批准号:0070492
- 负责人:
- 金额:$ 17.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-01 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal is concerned with two main projects. The former focuses onvarious questions in sub-Riemannian geometry and in the closely connectedanalysis of sub-elliptic pde's and systems. The PI proposes to investigatethe classification of non-negative entire solutions to non-linearequations in groups of Heisenberg type, and compute the best constants inthe Folland-Stein Sobolev embedding. This program is instrumental to apossible attack of the compact CR Yamabe problem in the open case of CRmanifolds of co-dimension higher than one. The geometric case of suchembedding will also be investigated along with the relative isoperimetricinequalities. The PI also proposes to study the regularity of minimalsurfaces, the question of traces on lower dimensinal sub-manifolds offunctions having integrable horizontal derivatives. The basic boundaryvalue problems, such as the Dirichlet and the Neumann problem will also beinvestigated, and a theory of variational inequalities and regularity of"free boundaries" will be developed. The second project is concerned withvarious problems in which symmetry plays an important role. One of them isconcerned with the determination of the extremal functions in theTomas-Stein restriction theorem for the Fourier transform. Other problemsare connected with symmetry in the exterior obstacle problem, a conjectureof De Giorgi connected to minimal surfaces, and symmetry in the evolutionof surfaces driven by mean curvature.Partial differential equations and systems formed by the latter are thebasic laws which describe most natural phenomena. An understanding of thephysical world also requires grasping the underlying geometric structureof the latter in its various forms. The present proposal belongs to thatmainstream of research which sits at the confluence of the theory ofpartial differential equations and systems, both linear and non-linear,and their connections with an emerging type of geometry, calledsub-Riemannian geometry. Both theories have witnessed an explosion ofinterest in the last decade and they continue to attract the interest ofvarious schools of mathematicians both nationwide and abroad. Another mainpart of this proposal is devoted to the study of physical and mathematicalproblems in which symmetry plays an important role. Symmetry is presenteverywhere in nature, a remarkable instance being the fundamental lawsof gravitation and electrostatic attraction. The study of conditions underwhich a given natural phenomenon develops symmetries is both important forits practical consequences (the presence of symmetriesdrastically reduces the human effort) and for its implicationsin the furthering of our knowledge.
这项提案涉及两个主要项目。前者侧重于次黎曼几何中的各种问题,以及次椭圆偏微分方程组和系统的紧密联系的分析。PI建议在Heisenberg型群中研究非线性方程的非负整体解的分类,并计算Folland-Stein Sobolev嵌入中的最佳常数。该程序有助于在余维大于1的CR型流形的开放情形下对紧致CR Yamabe问题进行可能的攻击。我们还将研究这种夹层的几何情况以及相对等周不等式。PI还建议研究极小曲面的正则性,即具有可积水平导数的函数的低维子流形上的迹问题。基本边值问题,如Dirichlet问题和Neumann问题,也将被研究,并将发展一个变分不等式和“自由边界”的正则性理论。第二个项目涉及各种问题,其中对称性起着重要作用。其中之一是关于傅里叶变换的Tomas-Stein限制定理中极值函数的确定。其他问题还涉及外部障碍问题中的对称性、极小曲面上的De Giorgi猜想以及由平均曲率驱动的曲面演化中的对称性。由后者形成的偏微分方程组和系统是描述大多数自然现象的基本定律。对物理世界的理解还需要掌握后者的各种形式的基本几何结构。目前的建议属于研究偏微分方程组和系统理论的主流,包括线性和非线性的,以及它们与一种被称为次黎曼几何的新兴几何类型的联系。在过去的十年里,这两个理论都见证了人们的兴趣的爆炸性增长,它们继续吸引着国内外不同学派的数学家的兴趣。这项建议的另一个主要部分致力于研究对称性在其中起重要作用的物理和数学问题。对称性在自然界中无处不在,一个显著的例子是引力和静电吸引的基本定律。研究一种给定的自然现象产生对称性的条件,既是因为它的实际结果(对称性的存在极大地减少了人类的努力),也是因为它涉及到我们知识的进一步发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicola Garofalo其他文献
Asymptotic expansions for a class of Fourier integrals and applications to the Pompeiu problem
- DOI:
10.1007/bf02820458 - 发表时间:
1991-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Nicola Garofalo;Fausto Segala - 通讯作者:
Fausto Segala
Absence of positive Eigenvalues for a class of subelliptic operators
- DOI:
10.1007/bf01446315 - 发表时间:
1996-01-01 - 期刊:
- 影响因子:1.400
- 作者:
Nicola Garofalo;Zhongwei Shen - 通讯作者:
Zhongwei Shen
On an evolution equation in sub-Finsler geometry
- DOI:
- 发表时间:
2024-02 - 期刊:
- 影响因子:0
- 作者:
Nicola Garofalo - 通讯作者:
Nicola Garofalo
Overdetermined problems in groups of Heisenberg type: Conjectures and partial results
海森堡型群中的超定问题:猜想与部分结果
- DOI:
10.1016/j.jfa.2024.110588 - 发表时间:
2024-11-15 - 期刊:
- 影响因子:1.600
- 作者:
Nicola Garofalo;Dimiter Vassilev - 通讯作者:
Dimiter Vassilev
On the forward in time propagation of zeros in fractional heat type problems
- DOI:
10.1007/s00013-023-01886-7 - 发表时间:
2023-07-18 - 期刊:
- 影响因子:0.500
- 作者:
Agnid Banerjee;Nicola Garofalo - 通讯作者:
Nicola Garofalo
Nicola Garofalo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicola Garofalo', 18)}}的其他基金
Monotonicity formulas, nonlinear PDE's and sub-Riemannian Geometry
单调性公式、非线性偏微分方程和亚黎曼几何
- 批准号:
1001317 - 财政年份:2010
- 资助金额:
$ 17.7万 - 项目类别:
Continuing Grant
Nonlinear Partial Differential Equations in Sub-Riemannian Geometry
亚黎曼几何中的非线性偏微分方程
- 批准号:
0701001 - 财政年份:2007
- 资助金额:
$ 17.7万 - 项目类别:
Continuing Grant
Some nonlinear problems in analysis and geometry
分析和几何中的一些非线性问题
- 批准号:
0300477 - 财政年份:2003
- 资助金额:
$ 17.7万 - 项目类别:
Continuing Grant
Optimal Regularity for Nonlinear Pde's and Systems in Carnot-Caratheodory Spaces and Applications to Geometry, Symmetry for Pde's, Unique Continuation
卡诺-卡拉特奥多里空间中非线性偏微分方程和系统的最优正则性及其几何应用、偏微分方程的对称性、唯一延拓
- 批准号:
9706892 - 财政年份:1997
- 资助金额:
$ 17.7万 - 项目类别:
Continuing Grant
Mathematical Sciences: Unique Continuation, Regularity of Solutions to Linear and Nonlinear Equations of Nonelliptic Type, Symmetry for PDE's
数学科学:非椭圆型线性和非线性方程解的唯一连续性、正则性、偏微分方程的对称性
- 批准号:
9404358 - 财政年份:1994
- 资助金额:
$ 17.7万 - 项目类别:
Continuing Grant
Mathematical Sciences: "Unique Continuation, Quantitative Properties of Solutions and Symmetry for PDE's
数学科学:“偏微分方程的独特连续性、解的定量性质和对称性
- 批准号:
9104023 - 财政年份:1991
- 资助金额:
$ 17.7万 - 项目类别:
Continuing Grant
Mathematical Sciences: Symmetry for PDE, Quantitative Properties of Solutions of PDE, and Unique Continuation
数学科学:偏微分方程的对称性、偏微分方程解的定量性质以及唯一连续性
- 批准号:
9096158 - 财政年份:1989
- 资助金额:
$ 17.7万 - 项目类别:
Standard Grant
Mathematical Sciences: Symmetry for PDE, Quantitative Properties of Solutions of PDE, and Unique Continuation
数学科学:偏微分方程的对称性、偏微分方程解的定量性质以及唯一连续性
- 批准号:
8905338 - 财政年份:1989
- 资助金额:
$ 17.7万 - 项目类别:
Standard Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
全纯Mobius变换及其在相对论和信号分析中的应用
- 批准号:11071230
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
枢纽港选址及相关问题的算法设计
- 批准号:71001062
- 批准年份:2010
- 资助金额:17.6 万元
- 项目类别:青年科学基金项目
统计过程控制图的设计理论及其应用
- 批准号:10771107
- 批准年份:2007
- 资助金额:22.0 万元
- 项目类别:面上项目
MIMO电磁探测技术与成像方法研究
- 批准号:40774055
- 批准年份:2007
- 资助金额:35.0 万元
- 项目类别:面上项目
相似海外基金
Machine Learning techniques applied to non-linear differential equations
应用于非线性微分方程的机器学习技术
- 批准号:
572217-2022 - 财政年份:2022
- 资助金额:
$ 17.7万 - 项目类别:
University Undergraduate Student Research Awards
Non-linear partial differential equations, stochastic representations, and numerical approximation by deep learning
非线性偏微分方程、随机表示和深度学习数值逼近
- 批准号:
EP/W004070/1 - 财政年份:2021
- 资助金额:
$ 17.7万 - 项目类别:
Research Grant
Soliton Dynamics for Non-Linear Wave Equations
非线性波动方程的孤子动力学
- 批准号:
1954455 - 财政年份:2020
- 资助金额:
$ 17.7万 - 项目类别:
Continuing Grant
Regularity, Stability, and Uniqueness Questions for Certain Non-Linear Partial Differential Equations
某些非线性偏微分方程的正则性、稳定性和唯一性问题
- 批准号:
1956092 - 财政年份:2020
- 资助金额:
$ 17.7万 - 项目类别:
Standard Grant
Building a Theory of Regular Structures for Non-Autonomous and Quasi-Linear Rough Evolution Equations, and Applying the Theory to Forest Kinematic Ecosystems
建立非自治和拟线性粗糙演化方程的规则结构理论,并将该理论应用于森林运动生态系统
- 批准号:
19K14555 - 财政年份:2019
- 资助金额:
$ 17.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Analysis of Non-linear Equations on Graphs
图上的非线性方程分析
- 批准号:
544940-2019 - 财政年份:2019
- 资助金额:
$ 17.7万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Singularity formations in non linear partial differential equations
非线性偏微分方程中的奇异性形成
- 批准号:
2278691 - 财政年份:2019
- 资助金额:
$ 17.7万 - 项目类别:
Studentship
Analysis of Non-Linear Partial Differential Equations in Free Boundary Fluid Dynamics and Kinetic Theory
自由边界流体动力学和运动理论中非线性偏微分方程的分析
- 批准号:
1764177 - 财政年份:2018
- 资助金额:
$ 17.7万 - 项目类别:
Standard Grant
Structure of the solutions to non-linear hyperbolic partial differential equations derived from astrophysics
天体物理学非线性双曲偏微分方程解的结构
- 批准号:
18K03371 - 财政年份:2018
- 资助金额:
$ 17.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of fully non-linear geometric problems and differential equations
完全非线性几何问题和微分方程的分析
- 批准号:
DE180100110 - 财政年份:2018
- 资助金额:
$ 17.7万 - 项目类别:
Discovery Early Career Researcher Award