Nonlinear Partial Differential Equations in Sub-Riemannian Geometry
亚黎曼几何中的非线性偏微分方程
基本信息
- 批准号:0701001
- 负责人:
- 金额:$ 25.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-01 至 2012-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nonlinear Partial Differential Equations in sub-Riemannian Geometry Abstract of Proposed Research Nicola Garofalo Sub-Riemannian spaces model media with a constrained dynamics: motion at any point is only allowed along a limited set of directions, which are prescribed by the physical problem at hand. Typical examples are crystalline structures, or the movements of the arm of a robot. Models of sub-Riemannian spaces appear in diverse areas of both pure and applied sciences. These include harmonic analysis, several complex variables, group representation, calculus of variations and control theory, geometry (collapsing of Riemannian spaces, CR geometry), geometric measure theory, (Alexandrov spaces, Lie group theory, complex manifolds), quantum mechanics, robotics, mathematical finance, material sciences (crystalline structures), medicine (neurophysiology of the cerebral cortex). The development of analysis and geometry during the past century has been greatly influenced by questions arising from the analysis of systems of partial differential equations; often nonlinear systems. While most of these problems have by now been settled in the classical Euclidean or Riemannian settings, their sub-Riemannian counterparts presently form a body of fundamental and challenging new directions in mathematics. The appropriate mathematical formulation of the problems at hand involves the framework of sub-Riemannian spaces, whose basic prototype is the Heisenberg group (also known to physicists as Weyl group). The class of Carnot groups, is the geometric framework for most problems to be studied under this award. Specific topics include (i) To continue the study of minimal surfaces with particular emphasis on the Bernstein problem and on the question of their regularity including Poincare-Sobolev inequalities and Liouville type theorems on minimal surfaces; (ii) The development of a regularity theory for new variational inequalities with non-holonomic constraints arising in various branches of the applied sciences and the investigation of monotonicity formulas for the relevant constrained energies associated with these problems; (iii) Isoperimetric inequalities for the Gaussian measures associated with the heat semigroup; (iv) To continue the development of the theory of convexity in connection with a maximum principle of Alexandrov-Bakelman-Pucci type; (v) To investigate a CR positive mass theorem using the theory of minimal surfaces; (vi) To study the sharp interior regularity of solutions of nonlinear subelliptic equations. The basic laws that describe most natural phenomena are usually stated as partial differential equations or systems of equations. An understanding of the physical world also requires use of the underlying geometric structure. The present proposal belongs to the mainstream of research which sits at the confluence of the theory of partial differential equations with an emerging type of geometry, called sub-Riemannian geometry. Both theories have witnessed an explosion of interest in the last decade and now attract the interest of various schools of mathematicians both in the US and abroad. Under this award we will investigate problems from mathematical physics and geometry where symmetry plays an important role. Symmetry is present everywhere in nature, including in the fundamental laws of gravitation and electrostatic attraction. The study of conditions under which a natural phenomenon develops symmetries has both practical consequences and intrinsic interest.
次黎曼几何中的非线性偏微分方程组建议研究的摘要尼古拉·加洛法洛次黎曼空间模型介质具有约束动力学:任何点上的运动只允许沿着有限的方向,这是由手头的物理问题所规定的。典型的例子是晶体结构,或机器人手臂的运动。亚黎曼空间的模型出现在理论科学和应用科学的不同领域。这些课程包括调和分析、多个复变量、群表示、变分与控制论、几何(黎曼空间的塌缩,CR几何)、几何测度论(亚历山大空间、李群论、复流形)、量子力学、机器人学、数学金融学、材料科学(晶体结构)、医学(大脑皮层的神经生理学)。在过去的一个世纪里,分析和几何的发展很大程度上受到了偏微分方程组(通常是非线性系统)分析中产生的问题的影响。虽然到目前为止,这些问题中的大多数已经在经典的欧几里得或黎曼背景下得到解决,但它们的次黎曼背景下的对应问题目前在数学中形成了一系列基本的和具有挑战性的新方向。手头问题的适当数学表述涉及次黎曼空间的框架,其基本原型是海森堡群(物理学家也称为Weyl群)。卡诺群的类,是这个奖项下要研究的大多数问题的几何框架。具体的主题包括:(I)继续研究极小曲面,特别侧重于Bernstein问题及其正则性问题,包括Poincare-Sobolv不等式和极小曲面上的Liouvle型定理;(Ii)发展应用科学各分支中出现的具有非完整约束的新变分不等式的正则性理论,并研究与这些问题相关的约束能量的单调性公式;(Iii)与热半群有关的高斯测度的等周不等式;(Iv)继续发展与Alexandrov-Bakelman-Pucci型极大值原理有关的凸性理论;(V)利用极小曲面理论研究CR正质量定理;(Vi)研究非线性次椭圆方程解的内部正则性。描述大多数自然现象的基本定律通常被表述为偏微分方程式或方程组。对物理世界的理解也需要使用潜在的几何结构。目前的建议属于偏微分方程组理论与一种新兴的几何类型--亚黎曼几何--交汇处的主流研究。在过去的十年里,这两种理论都引起了人们的极大兴趣,现在吸引了国内外不同学派的数学家的兴趣。在这个奖项下,我们将研究对称性起重要作用的数学、物理和几何问题。对称性在自然界中无处不在,包括引力和静电吸引的基本定律。研究自然现象形成对称性的条件既有实际的结果,也有内在的利益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicola Garofalo其他文献
Asymptotic expansions for a class of Fourier integrals and applications to the Pompeiu problem
- DOI:
10.1007/bf02820458 - 发表时间:
1991-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Nicola Garofalo;Fausto Segala - 通讯作者:
Fausto Segala
Absence of positive Eigenvalues for a class of subelliptic operators
- DOI:
10.1007/bf01446315 - 发表时间:
1996-01-01 - 期刊:
- 影响因子:1.400
- 作者:
Nicola Garofalo;Zhongwei Shen - 通讯作者:
Zhongwei Shen
On an evolution equation in sub-Finsler geometry
- DOI:
- 发表时间:
2024-02 - 期刊:
- 影响因子:0
- 作者:
Nicola Garofalo - 通讯作者:
Nicola Garofalo
Overdetermined problems in groups of Heisenberg type: Conjectures and partial results
海森堡型群中的超定问题:猜想与部分结果
- DOI:
10.1016/j.jfa.2024.110588 - 发表时间:
2024-11-15 - 期刊:
- 影响因子:1.600
- 作者:
Nicola Garofalo;Dimiter Vassilev - 通讯作者:
Dimiter Vassilev
Hardy–Littlewood–Sobolev inequalities for a class of non-symmetric and non-doubling hypoelliptic semigroups
- DOI:
10.1007/s00208-020-02090-6 - 发表时间:
2020-10-31 - 期刊:
- 影响因子:1.400
- 作者:
Nicola Garofalo;Giulio Tralli - 通讯作者:
Giulio Tralli
Nicola Garofalo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicola Garofalo', 18)}}的其他基金
Monotonicity formulas, nonlinear PDE's and sub-Riemannian Geometry
单调性公式、非线性偏微分方程和亚黎曼几何
- 批准号:
1001317 - 财政年份:2010
- 资助金额:
$ 25.49万 - 项目类别:
Continuing Grant
Some nonlinear problems in analysis and geometry
分析和几何中的一些非线性问题
- 批准号:
0300477 - 财政年份:2003
- 资助金额:
$ 25.49万 - 项目类别:
Continuing Grant
Non-linear equations in analysis and geometry
分析和几何中的非线性方程
- 批准号:
0070492 - 财政年份:2000
- 资助金额:
$ 25.49万 - 项目类别:
Continuing Grant
Optimal Regularity for Nonlinear Pde's and Systems in Carnot-Caratheodory Spaces and Applications to Geometry, Symmetry for Pde's, Unique Continuation
卡诺-卡拉特奥多里空间中非线性偏微分方程和系统的最优正则性及其几何应用、偏微分方程的对称性、唯一延拓
- 批准号:
9706892 - 财政年份:1997
- 资助金额:
$ 25.49万 - 项目类别:
Continuing Grant
Mathematical Sciences: Unique Continuation, Regularity of Solutions to Linear and Nonlinear Equations of Nonelliptic Type, Symmetry for PDE's
数学科学:非椭圆型线性和非线性方程解的唯一连续性、正则性、偏微分方程的对称性
- 批准号:
9404358 - 财政年份:1994
- 资助金额:
$ 25.49万 - 项目类别:
Continuing Grant
Mathematical Sciences: "Unique Continuation, Quantitative Properties of Solutions and Symmetry for PDE's
数学科学:“偏微分方程的独特连续性、解的定量性质和对称性
- 批准号:
9104023 - 财政年份:1991
- 资助金额:
$ 25.49万 - 项目类别:
Continuing Grant
Mathematical Sciences: Symmetry for PDE, Quantitative Properties of Solutions of PDE, and Unique Continuation
数学科学:偏微分方程的对称性、偏微分方程解的定量性质以及唯一连续性
- 批准号:
9096158 - 财政年份:1989
- 资助金额:
$ 25.49万 - 项目类别:
Standard Grant
Mathematical Sciences: Symmetry for PDE, Quantitative Properties of Solutions of PDE, and Unique Continuation
数学科学:偏微分方程的对称性、偏微分方程解的定量性质以及唯一连续性
- 批准号:
8905338 - 财政年份:1989
- 资助金额:
$ 25.49万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Partial EIV 模型参数估计理论及其在测量数据处理中的应用研究
- 批准号:41664001
- 批准年份:2016
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
Partial Spread Bent函数与Bent-Negabent函数的构造及密码学性质研究
- 批准号:61402377
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
图的l1-嵌入性以及partial立方图和多重median图的刻画
- 批准号:11261019
- 批准年份:2012
- 资助金额:45.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
$ 25.49万 - 项目类别:
Standard Grant
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
- 批准号:
2307610 - 财政年份:2023
- 资助金额:
$ 25.49万 - 项目类别:
Standard Grant
(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
- 批准号:
2246031 - 财政年份:2023
- 资助金额:
$ 25.49万 - 项目类别:
Standard Grant
Toward a global analysis on solutions of nonlinear partial differential equations
非线性偏微分方程解的全局分析
- 批准号:
23K03165 - 财政年份:2023
- 资助金额:
$ 25.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topics in the Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析专题
- 批准号:
2247027 - 财政年份:2023
- 资助金额:
$ 25.49万 - 项目类别:
Standard Grant
Separation Rates for Dissipative Nonlinear Partial Differential Equations
耗散非线性偏微分方程的分离率
- 批准号:
2307097 - 财政年份:2023
- 资助金额:
$ 25.49万 - 项目类别:
Continuing Grant
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
- 批准号:
2318032 - 财政年份:2023
- 资助金额:
$ 25.49万 - 项目类别:
Continuing Grant
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
- 批准号:
23K03167 - 财政年份:2023
- 资助金额:
$ 25.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonlinear partial differential equations in heterogeneous frameworks
异构框架中的非线性偏微分方程
- 批准号:
RGPIN-2017-04313 - 财政年份:2022
- 资助金额:
$ 25.49万 - 项目类别:
Discovery Grants Program - Individual
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
- 批准号:
2206675 - 财政年份:2022
- 资助金额:
$ 25.49万 - 项目类别:
Continuing Grant














{{item.name}}会员




