Emphasis Year: Nonlinear Partial Differential Equations and Their Applications; Spring, 1998; Evanston, Illinois

重点年份:非线性偏微分方程及其应用;

基本信息

  • 批准号:
    9708261
  • 负责人:
  • 金额:
    $ 2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-09-01 至 1999-08-31
  • 项目状态:
    已结题

项目摘要

9708261 Chen This award will provide partial support for the 1997-98 Emphasis Year in Nonlinear Partial Differential Equations and Their Applications at Northwestern University. The goal of this special year is to develop some of the new connections between nonlinear partial differential equations and such diverse areas as fluid mechanics, phase transitions, free boundary problems, materials science, and mean curvature flow. The focus of this emphasis year will be an International Conference on Nonlinear Partial Differential Equations and Applications in the Spring of 1998. During the year, a series of visits of experts and junior researchers in the indicated areas is planned. Nonlinear partial differential equations arise in almost all areas of science and engineering. In particular, they arise in materials science, biophysics, environmental and global change processes, and industrial manufacturing processes. These equations are predominant in such areas as elasticity, plasticity, semiconductors, biological transport of ions, phase transitions, multi-phase processes, combustion, and etching and deposition processes. Understanding solutions of such nonlinear equations enables one to gain new physical insights, to discover the intrinsic laws, and, in turn, to solve some challenging problems in these areas. The proposed project is intended to bring together a diverse group of applied mathematicians and theoretical analysts in partial differential equations and their applications who are able to explore connections between their fields. Individuals will be selected who can share expertise with an eye toward applications in the indicated areas in applied sciences and other mathematical areas represented by the Northwestern faculty. Researchers with such diverse expertise have often unexplored common interests which, by means of fruitful exchanges, can lead to novel results and discoveries. Particular attention will be focused on the p articipation of recent doctoral recipients and/or graduate students in order to foster their interests in nonlinear partial differential equations and applications in science and engineering.
小行星9708261 该奖项将为1997-98重点年提供部分支持, 非线性偏微分方程及其应用 西北大学。这个特殊年份的目标是发展一些 非线性偏微分方程与 诸如流体力学、相变、自由边界 问题、材料科学和平均曲率流。的重点 重点年将是非线性部分国际会议 1998年春季微分方程及其应用。期间 一年来,专家和初级研究人员对所指国家进行了一系列访问, 地区已规划。 非线性偏微分方程出现在几乎所有的科学领域 与工程学特别是,它们出现在材料科学,生物物理学, 环境和全球变化过程以及工业制造 流程. 这些方程在弹性力学、 可塑性,半导体,离子的生物运输,相变, 多相工艺、燃烧以及蚀刻和沉积工艺。 理解这些非线性方程的解使人们能够获得 新的物理见解,以发现内在的法律,并反过来,以解决 这些领域的一些挑战性问题。 拟议项目旨在 将一群不同的应用数学家和理论 偏微分方程及其应用的分析师, 探索他们领域之间的联系 个人将被选中 谁可以分享专业知识,着眼于在指定的应用程序, 应用科学和其他数学领域的代表, 西北大学教员。 拥有如此多样化专业知识的研究人员经常 未经探索的共同利益,通过富有成效的交流, 导致新的结果和发现。 将特别关注 最近的博士生和/或研究生的参与 为了培养他们对非线性偏微分方程的兴趣, 在科学和工程中的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gui-Qiang Chen其他文献

Kolmogorov’s Theory of Turbulence and Inviscid Limit of the Navier-Stokes Equations in $${\mathbb {R}^3}$$
Some recent methods for partial differential equations of divergence form
Entropy Solutions in L ∞ for the Euler Equations in Nonlinear Elastodynamics and Related Equations

Gui-Qiang Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gui-Qiang Chen', 18)}}的其他基金

Conferences/Workshops on Partial Differential Equations and Related Analysis and Applications
偏微分方程及相关分析与应用会议/研讨会
  • 批准号:
    0935967
  • 财政年份:
    2009
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Research on Nonlinear Partial Differential Equations in Conservation Laws and Related Applications
守恒定律中非线性偏微分方程的研究及相关应用
  • 批准号:
    0807551
  • 财政年份:
    2008
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Mathematical Problems in Nonlinear Conservation Laws and Related Applications
非线性守恒定律中的数学问题及相关应用
  • 批准号:
    0505473
  • 财政年份:
    2005
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Emphasis Year: Stochastic Analysis and Partial Differential Equations; Evanston, IL; 2004-2005
重点年份:随机分析和偏微分方程;
  • 批准号:
    0426172
  • 财政年份:
    2004
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Multi-Dimensional Problems for the Euler Equations of Compressible Fluid Flow and Related Problems in Hyperbolic Conservation Laws
FRG:合作研究:可压缩流体流动欧拉方程的多维问题及双曲守恒定律中的相关问题
  • 批准号:
    0244473
  • 财政年份:
    2003
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Nonlinear Problems in Conservation Laws and Fluid Dynamics and Related Partial Differential Equations
守恒定律和流体动力学中的非线性问题及相关偏微分方程
  • 批准号:
    0204225
  • 财政年份:
    2002
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Emphasis Year: Nonlinear Partial Differential Equations and Their Applications
重点年份:非线性偏微分方程及其应用
  • 批准号:
    0204455
  • 财政年份:
    2002
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
U.S.-China Cooperative Research: Nonlinear Partial Differential Equations in Fluid Dynamics and Related Problems
中美合作研究:流体动力学中的非线性偏微分方程及相关问题
  • 批准号:
    9987378
  • 财政年份:
    2000
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Problems in Fluid Mechanics and Related Nonlinear Partial Differential Equations and Applications
流体力学及相关非线性偏微分方程问题及应用
  • 批准号:
    9971793
  • 财政年份:
    1999
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
U.S.-France Cooperative Research: Mathematical Problems in Continuum Mechanics and Related Equations
美法合作研究:连续介质力学及相关方程的数学问题
  • 批准号:
    9726215
  • 财政年份:
    1998
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant

相似海外基金

CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    $ 2万
  • 项目类别:
    Studentship
Participant Support for the Kahramanmaraş, Turkey, Earthquake Sequence One-year Anniversary Programming at the 2024 EERI Annual Meeting; Seattle, Washington; 9-12 April 2024
在 2024 年 EERI 年会上为土耳其卡赫拉曼马拉地震一周年纪念活动提供支持;
  • 批准号:
    2418579
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
HSI Pilot Project: Institutionalizing a Teaching and Learning Excellence Community of Practice focused on First-Year Student Success in STEM
HSI 试点项目:将卓越教学和学习实践社区制度化,重点关注一年级学生在 STEM 方面的成功
  • 批准号:
    2345247
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
HSI Implementation and Evaluation Project: Leveraging Social Psychology Interventions to Promote First Year STEM Persistence
HSI 实施和评估项目:利用社会心理学干预措施促进第一年 STEM 的坚持
  • 批准号:
    2345273
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Extracurricular Instrument Training Experience for Students at a Two-Year College
两年制大学学生课外乐器培训体验
  • 批准号:
    2323078
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Expanding Pathways for Preparing the Next Generation of Engineers: First-Year Engineering 2.0 (FYE2.0)
拓展培养下一代工程师的途径:一年级工程 2.0 (FYE2.0)
  • 批准号:
    2337003
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
What are the implications of health inequalities such as parental education and household income in BAME 11-16 year old's mental health in Wales
父母教育和家庭收入等健康不平等对威尔士 BAME 11-16 岁心理健康有何影响
  • 批准号:
    2875399
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
    Studentship
Conference: A Virtual Workshop for Two-Year College Geoscience Faculty to Develop National Science Foundation Grant Proposals
会议:两年制大学地球科学教师制定国家科学基金会拨款提案的虚拟研讨会
  • 批准号:
    2349758
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Conference: Two-Year College Data Science Initiative (TYCDSI) Workshop
会议:两年大学数据科学计划 (TYCDSI) 研讨会
  • 批准号:
    2402290
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Using Advanced Technology to Enhance Learning and Teaching in Science Labs at Two-Year Colleges
利用先进技术加强两年制学院科学实验室的学习和教学
  • 批准号:
    2329563
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了