Research on Nonlinear Partial Differential Equations in Conservation Laws and Related Applications

守恒定律中非线性偏微分方程的研究及相关应用

基本信息

  • 批准号:
    0807551
  • 负责人:
  • 金额:
    $ 26.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-06-01 至 2012-05-31
  • 项目状态:
    已结题

项目摘要

This project is focused on mathematical research on nonlinear partial differential equations in conservation laws and related applications, along with the analysis and development of efficient nonlinear techniques. The work has three interrelated aspects: (i) shock reflection-diffraction; (ii) stability of multidimensional shock-fronts; and (iii) isometric embedding in differential geometry. Their unifying mathematical theme is the theory of nonlinear partial differential equations of mixed hyperbolic-elliptic type and related nonlinear techniques. In each topic, nonlinear problems involving partial differential equations of mixed type will be posed and corresponding mathematical techniques for their solution will be devised. As a result, new physical insights will be gained by investigating important nonlinear applied partial differential equations, effective nonlinear techniques will be developed, and the correct mathematical frameworks in which to pose and discuss these problems will be established. The work will also lead to the analysis and development of nonlinear techniques which will have applications in broader classes of important nonlinear partial differential equations.While great progress has been made for nonlinear partial differential equations of hyperbolic type (e.g. for the description of wave propagation) and of elliptic type (e.g.. for deformations of solid bodies) respectively, the mathematical study of such equations of mixed hyperbolic-elliptic type and related applications is much less developed. Problems of this type occur when the behavior of gas flow near the speed of sound in the vicinity of solid objects is described. Examples include aircraft wings and turbine components. The work supported by this award will support research on nonlinear problems involving partial differential equations of mixed type and corresponding mathematical techniques. It will lead to a deeper understanding of nonlinear phenomena of mixed hyperbolic-elliptic type and will provide efficient nonlinear methods and theories for applications. Given the richness and range of applications, this research project will have a broad impact by investigating several important nonlinear partial differential equations of mixed type and related applications and by developing methodology and a set of nonlinear techniques for their further study. The project will (i) yield new understanding of the mathematics of gases, fluids, and geometry, which is critical for aerodynamics, industrial gas processing, materials science, medical imaging, and environmental science; (ii) provide advanced training for graduate students, post-doctoral associates, and other junior researchers, including several members from underrepresented groups. Furthermore, since the design of efficient numerical schemes hinges on the understanding of the underlying mathematical structure and pattern, success with this project will be useful to numerical analysis.
本课题致力于守恒律中非线性偏微分方程的数学研究和相关应用,以及有效的非线性技术的分析和发展。这项工作有三个相互关联的方面:(I)激波反射-绕射;(Ii)多维激波阵面的稳定性;(Iii)微分几何中的等距嵌入。他们统一的数学主题是混合双曲-椭圆型非线性偏微分方程组的理论和相关的非线性技巧。在每个主题中,将提出涉及混合型偏微分方程的非线性问题,并将设计相应的数学技巧来解决这些问题。因此,通过研究重要的非线性应用偏微分方程,将获得新的物理见解,将开发有效的非线性技术,并将建立正确的数学框架来提出和讨论这些问题。这项工作还将导致非线性技术的分析和发展,这些技术将在更广泛的类重要的非线性偏微分方程组中得到应用。双曲型(例如,用于描述波的传播)和椭圆型(例如,用于描述波的传播)的非线性偏微分方程已经取得了很大的进展。对于固体体的变形),这类混合双曲-椭圆型方程的数学研究和相关应用还很不发达。当描述固体物体附近接近音速的气体流动行为时,就会出现这类问题。例子包括飞机机翼和涡轮机部件。该奖项支持的工作将支持涉及混合型偏微分方程组的非线性问题的研究和相应的数学技巧。这将加深对混合双曲-椭圆型非线性现象的理解,并为实际应用提供有效的非线性方法和理论。鉴于应用的丰富性和广泛性,本研究项目将通过研究几个重要的混合型非线性偏微分方程组及其相关应用,并为进一步研究它们发展一套方法和一套非线性技术,而产生广泛的影响。该项目将(I)对气体、流体和几何的数学产生新的理解,这些数学对空气动力学、工业气体处理、材料科学、医学成像和环境科学至关重要;(Ii)为研究生、博士后助理和其他初级研究人员提供高级培训,包括来自代表性不足群体的几名成员。此外,由于有效数值格式的设计取决于对基本数学结构和模式的理解,因此该项目的成功将有助于数值分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gui-Qiang Chen其他文献

Kolmogorov’s Theory of Turbulence and Inviscid Limit of the Navier-Stokes Equations in $${\mathbb {R}^3}$$
Some recent methods for partial differential equations of divergence form
Entropy Solutions in L ∞ for the Euler Equations in Nonlinear Elastodynamics and Related Equations

Gui-Qiang Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gui-Qiang Chen', 18)}}的其他基金

Conferences/Workshops on Partial Differential Equations and Related Analysis and Applications
偏微分方程及相关分析与应用会议/研讨会
  • 批准号:
    0935967
  • 财政年份:
    2009
  • 资助金额:
    $ 26.85万
  • 项目类别:
    Standard Grant
Mathematical Problems in Nonlinear Conservation Laws and Related Applications
非线性守恒定律中的数学问题及相关应用
  • 批准号:
    0505473
  • 财政年份:
    2005
  • 资助金额:
    $ 26.85万
  • 项目类别:
    Standard Grant
Emphasis Year: Stochastic Analysis and Partial Differential Equations; Evanston, IL; 2004-2005
重点年份:随机分析和偏微分方程;
  • 批准号:
    0426172
  • 财政年份:
    2004
  • 资助金额:
    $ 26.85万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Multi-Dimensional Problems for the Euler Equations of Compressible Fluid Flow and Related Problems in Hyperbolic Conservation Laws
FRG:合作研究:可压缩流体流动欧拉方程的多维问题及双曲守恒定律中的相关问题
  • 批准号:
    0244473
  • 财政年份:
    2003
  • 资助金额:
    $ 26.85万
  • 项目类别:
    Standard Grant
Nonlinear Problems in Conservation Laws and Fluid Dynamics and Related Partial Differential Equations
守恒定律和流体动力学中的非线性问题及相关偏微分方程
  • 批准号:
    0204225
  • 财政年份:
    2002
  • 资助金额:
    $ 26.85万
  • 项目类别:
    Standard Grant
Emphasis Year: Nonlinear Partial Differential Equations and Their Applications
重点年份:非线性偏微分方程及其应用
  • 批准号:
    0204455
  • 财政年份:
    2002
  • 资助金额:
    $ 26.85万
  • 项目类别:
    Standard Grant
U.S.-China Cooperative Research: Nonlinear Partial Differential Equations in Fluid Dynamics and Related Problems
中美合作研究:流体动力学中的非线性偏微分方程及相关问题
  • 批准号:
    9987378
  • 财政年份:
    2000
  • 资助金额:
    $ 26.85万
  • 项目类别:
    Standard Grant
Problems in Fluid Mechanics and Related Nonlinear Partial Differential Equations and Applications
流体力学及相关非线性偏微分方程问题及应用
  • 批准号:
    9971793
  • 财政年份:
    1999
  • 资助金额:
    $ 26.85万
  • 项目类别:
    Continuing Grant
U.S.-France Cooperative Research: Mathematical Problems in Continuum Mechanics and Related Equations
美法合作研究:连续介质力学及相关方程的数学问题
  • 批准号:
    9726215
  • 财政年份:
    1998
  • 资助金额:
    $ 26.85万
  • 项目类别:
    Standard Grant
Emphasis Year: Nonlinear Partial Differential Equations and Their Applications; Spring, 1998; Evanston, Illinois
重点年份:非线性偏微分方程及其应用;
  • 批准号:
    9708261
  • 财政年份:
    1997
  • 资助金额:
    $ 26.85万
  • 项目类别:
    Standard Grant

相似海外基金

DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219384
  • 财政年份:
    2022
  • 资助金额:
    $ 26.85万
  • 项目类别:
    Standard Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219391
  • 财政年份:
    2022
  • 资助金额:
    $ 26.85万
  • 项目类别:
    Standard Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219397
  • 财政年份:
    2022
  • 资助金额:
    $ 26.85万
  • 项目类别:
    Standard Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219434
  • 财政年份:
    2022
  • 资助金额:
    $ 26.85万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Spectral Analysis in Dispersive Partial Differential Equations
合作研究:色散偏微分方程中的非线性动力学和谱分析
  • 批准号:
    2055130
  • 财政年份:
    2021
  • 资助金额:
    $ 26.85万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Spectral Analysis in Dispersive Partial Differential Equations
合作研究:色散偏微分方程中的非线性动力学和谱分析
  • 批准号:
    2055072
  • 财政年份:
    2021
  • 资助金额:
    $ 26.85万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics of Nonlinear Partial Differential Equations: Integrating Deterministic and Probabilistic Methods
合作研究:非线性偏微分方程的动力学:集成确定性和概率方法
  • 批准号:
    1800852
  • 财政年份:
    2018
  • 资助金额:
    $ 26.85万
  • 项目类别:
    Continuing Grant
Collaborative Research: Dynamics of Nonlinear Partial Differential Equations: Integrating Deterministic and Probabilistic Methods
合作研究:非线性偏微分方程的动力学:集成确定性和概率方法
  • 批准号:
    1764403
  • 财政年份:
    2018
  • 资助金额:
    $ 26.85万
  • 项目类别:
    Continuing Grant
Collaborative Research: Non-Markovian Reduction of Nonlinear Stochastic Partial Differential Equations, and Applications to Climate Dynamics
合作研究:非线性随机偏微分方程的非马尔可夫约简及其在气候动力学中的应用
  • 批准号:
    1616450
  • 财政年份:
    2016
  • 资助金额:
    $ 26.85万
  • 项目类别:
    Standard Grant
Collaborative Research: Non-Markovian Reduction of Nonlinear Stochastic Partial Differential Equations, and Applications to Climate Dynamics
合作研究:非线性随机偏微分方程的非马尔可夫约简及其在气候动力学中的应用
  • 批准号:
    1616981
  • 财政年份:
    2016
  • 资助金额:
    $ 26.85万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了