Problems in Fluid Mechanics and Related Nonlinear Partial Differential Equations and Applications
流体力学及相关非线性偏微分方程问题及应用
基本信息
- 批准号:9971793
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-06-15 至 2003-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The award will support research on mathematical problems in fluid mechanics and related partial differential equations and their applications, along with the analysis and development of efficient numerical methods. The objective of this research program is threefold: investigate important nonlinear problems including compressible fluids with various constitutive relations, asymptotic problems, multiphase problems, transonic flows, and develop stable and efficient numerical algorithms; study dissipation mechanisms for nonlinear partial differential equations, especially for compressible viscous gas flow; and analyze and develop new theoretical techniques for the study of these problems.Problems in fluid dynamics arise in many areas of science and engineering,for example in gas dynamics, hydraulics, elasticity, plasticity, combustion, magnetohydrodynamics, multiphase flow, phase transition, charge transport in semiconductors, biological transport of ions, and etching and deposition processes. The physical processes are typically governed by certain nonlinear systems of partial differential equations. The award will support research onthe solvability of these nonlinear systems and the qualitative behavior of their solutions, as well as on the analysis and development of efficient theoretical and numerical methods. This will lead to a better understanding ofthese flow phenomena and their governing laws.
该奖项将支持流体力学和相关偏微分方程及其应用中的数学问题的研究,沿着有效数值方法的分析和开发。本研究计划的目标有三个:研究重要的非线性问题,包括具有各种本构关系的可压缩流体、渐近问题、多相问题、跨音速流动,并开发稳定和有效的数值算法;研究非线性偏微分方程的耗散机制,特别是可压缩粘性气体流动;并分析和发展新的理论技术来研究这些问题。流体动力学的问题出现在许多科学和工程领域,例如气体动力学,水力学,弹性,塑性,燃烧,磁流体力学,多相流,相变、半导体中的电荷传输、离子的生物传输以及蚀刻和沉积工艺。 物理过程通常由某些非线性偏微分方程组控制。 该奖项将支持对这些非线性系统的可解性及其解的定性行为的研究,以及对有效的理论和数值方法的分析和发展的研究。这将导致更好地理解这些流动现象和它们的支配规律。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gui-Qiang Chen其他文献
Kolmogorov’s Theory of Turbulence and Inviscid Limit of the Navier-Stokes Equations in $${\mathbb {R}^3}$$
- DOI:
10.1007/s00220-011-1404-9 - 发表时间:
2012-01-10 - 期刊:
- 影响因子:2.600
- 作者:
Gui-Qiang Chen;James Glimm - 通讯作者:
James Glimm
Some recent methods for partial differential equations of divergence form
- DOI:
10.1007/s00574-003-0005-4 - 发表时间:
2003-04-01 - 期刊:
- 影响因子:0.900
- 作者:
Gui-Qiang Chen - 通讯作者:
Gui-Qiang Chen
Entropy Solutions in L ∞ for the Euler Equations in Nonlinear Elastodynamics and Related Equations
- DOI:
10.1007/s00205-003-0284-3 - 发表时间:
2003-11-03 - 期刊:
- 影响因子:2.400
- 作者:
Gui-Qiang Chen;Bang-He Li;Tian-Hong Li - 通讯作者:
Tian-Hong Li
Gui-Qiang Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gui-Qiang Chen', 18)}}的其他基金
Conferences/Workshops on Partial Differential Equations and Related Analysis and Applications
偏微分方程及相关分析与应用会议/研讨会
- 批准号:
0935967 - 财政年份:2009
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Research on Nonlinear Partial Differential Equations in Conservation Laws and Related Applications
守恒定律中非线性偏微分方程的研究及相关应用
- 批准号:
0807551 - 财政年份:2008
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Mathematical Problems in Nonlinear Conservation Laws and Related Applications
非线性守恒定律中的数学问题及相关应用
- 批准号:
0505473 - 财政年份:2005
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Emphasis Year: Stochastic Analysis and Partial Differential Equations; Evanston, IL; 2004-2005
重点年份:随机分析和偏微分方程;
- 批准号:
0426172 - 财政年份:2004
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Multi-Dimensional Problems for the Euler Equations of Compressible Fluid Flow and Related Problems in Hyperbolic Conservation Laws
FRG:合作研究:可压缩流体流动欧拉方程的多维问题及双曲守恒定律中的相关问题
- 批准号:
0244473 - 财政年份:2003
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Nonlinear Problems in Conservation Laws and Fluid Dynamics and Related Partial Differential Equations
守恒定律和流体动力学中的非线性问题及相关偏微分方程
- 批准号:
0204225 - 财政年份:2002
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Emphasis Year: Nonlinear Partial Differential Equations and Their Applications
重点年份:非线性偏微分方程及其应用
- 批准号:
0204455 - 财政年份:2002
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
U.S.-China Cooperative Research: Nonlinear Partial Differential Equations in Fluid Dynamics and Related Problems
中美合作研究:流体动力学中的非线性偏微分方程及相关问题
- 批准号:
9987378 - 财政年份:2000
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
U.S.-France Cooperative Research: Mathematical Problems in Continuum Mechanics and Related Equations
美法合作研究:连续介质力学及相关方程的数学问题
- 批准号:
9726215 - 财政年份:1998
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Emphasis Year: Nonlinear Partial Differential Equations and Their Applications; Spring, 1998; Evanston, Illinois
重点年份:非线性偏微分方程及其应用;
- 批准号:
9708261 - 财政年份:1997
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似国自然基金
随机进程代数模型的Fluid逼近问题研究
- 批准号:61472343
- 批准年份:2014
- 资助金额:75.0 万元
- 项目类别:面上项目
ICF中电子/离子输运的PIC-FLUID混合模拟方法研究
- 批准号:11275269
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
Three problems in fluid mechanics through the lens of sparseness of the regions of intense fluid activity
从流体活动强烈区域的稀疏性角度来看流体力学中的三个问题
- 批准号:
2307657 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Multidimensional beyond-all-orders asymptotics for problems in fluid mechanics
流体力学问题的多维超全阶渐近
- 批准号:
2748522 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Studentship
Environmental Fluid Mechanics: Some Fundamental Problems and their Practical Relevance
环境流体力学:一些基本问题及其实际意义
- 批准号:
RGPIN-2016-06668 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Bringing granular mechanics to prevent fluid-driven soil erosion problems
利用颗粒力学来防止流体驱动的土壤侵蚀问题
- 批准号:
DE200101116 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Discovery Early Career Researcher Award
Environmental Fluid Mechanics: Some Fundamental Problems and their Practical Relevance
环境流体力学:一些基本问题及其实际意义
- 批准号:
RGPIN-2016-06668 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Environmental Fluid Mechanics: Some Fundamental Problems and their Practical Relevance
环境流体力学:一些基本问题及其实际意义
- 批准号:
RGPIN-2016-06668 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Finite element methods for coupled problems in incompressible fluid mechanics
不可压缩流体力学耦合问题的有限元方法
- 批准号:
2179127 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Studentship
Environmental Fluid Mechanics: Some Fundamental Problems and their Practical Relevance
环境流体力学:一些基本问题及其实际意义
- 批准号:
RGPIN-2016-06668 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Regularity Problems in Mathematical Fluid Mechanics
数学流体力学中的正则性问题
- 批准号:
RGPIN-2014-06461 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Environmental Fluid Mechanics: Some Fundamental Problems and their Practical Relevance
环境流体力学:一些基本问题及其实际意义
- 批准号:
RGPIN-2016-06668 - 财政年份:2017
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual