Nonlinear Problems in Conservation Laws and Fluid Dynamics and Related Partial Differential Equations
守恒定律和流体动力学中的非线性问题及相关偏微分方程
基本信息
- 批准号:0204225
- 负责人:
- 金额:$ 12.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-06-15 至 2005-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS Award AbstractAward #: 0204225PI: Chen, Gui-QiangInstitution: Northwestern University Program: Applied MathematicsProgram Manager: Catherine MavriplisTitle: Nonlinear Problems in Conservation Laws and Fluid Dynamics and Related Partial Differential EquationsThe investigator continues studies of nonlinear problems in conservation laws and fluid dynamics and related nonlinear partial differential equations and their applications, along with the analysis and development of efficient nonlinear methods. The objective of this research program is twofold: (1) to investigate important nonlinear problems such as multidimensional transonic shocks and free boundary problems, vacuum problems, asymptotic stability problems, compressible fluids with various constitutive relations, singular limit problems, multiphase problems, and the Riemann problem to gain new physical insights, to guide the formulation of efficient nonlinear methods, and to find the correct function spaces in which to pose the nonlinear conservation laws and develop the numerical methods that converge stably and rapidly; and (2) to analyze and develop nonlinear methods including free boundary methods, kinetic methods, geometric measure methods, weak convergence methods, shock capturing techniques, energy methods, and related potential techniques to formulate new, more efficient nonlinear methods and to solve various more important nonlinear problems in conservation laws and fluid dynamics.The nonlinear problems and related partial differential equations in this research program arise in such areas as gas dynamics, hydraulics, combustion, magnetohydrodynamics, semiconductor, elasticity, multiphase flow, phase transitions, kinetic theory, biophysics, and material science. The award will support research on the solvability of these nonlinear problems and related partial differential equations, the qualitative behavior of their solutions and related applications, as well as the analysis and development of nonlinear methods in applied analysis and numerical analysis. This research will lead to a deeper understanding of nonlinear phenomena and will provide more efficient nonlinear methods and theories for applications.Date: May 1, 2002
DMS Award AbstractAward #: 0204225 PI: Chen,Gui-Qiang机构: 西北大学课程: 应用数学项目经理:Catherine Mavriplis职务:守恒律和流体动力学及相关偏微分方程中的非线性问题研究员继续研究守恒律和流体动力学及相关非线性偏微分方程中的非线性问题及其应用,沿着有效的非线性方法的分析和开发。这项研究计划的目标是双重的:(1)研究重要的非线性问题,如多维跨音速激波和自由边界问题,真空问题,渐近稳定性问题,具有各种本构关系的可压缩流体,奇异极限问题,多相问题和黎曼问题,以获得新的物理见解,指导制定有效的非线性方法,寻找正确的函数空间,在其中提出非线性守恒律,并发展稳定快速收敛的数值方法;(2)分析和发展非线性方法,包括自由边界方法、动力学方法、几何测度方法、弱收敛方法、激波捕捉技术、能量方法和相关的潜在技术,制定新的,更有效的非线性方法,并解决各种更重要的非线性问题,在守恒定律和流体动力学。非线性问题和相关的偏微分方程在这个研究计划出现在这样的领域,气体动力学,水力学,燃烧,磁流体力学,半导体,弹性,多相流、相变、动力学理论、生物物理学和材料科学。该奖项将支持对这些非线性问题和相关偏微分方程的可解性,其解决方案的定性行为和相关应用的研究,以及应用分析和数值分析中的非线性方法的分析和发展。这一研究将使人们对非线性现象有更深的理解,并将为应用提供更有效的非线性方法和理论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gui-Qiang Chen其他文献
Kolmogorov’s Theory of Turbulence and Inviscid Limit of the Navier-Stokes Equations in $${\mathbb {R}^3}$$
- DOI:
10.1007/s00220-011-1404-9 - 发表时间:
2012-01-10 - 期刊:
- 影响因子:2.600
- 作者:
Gui-Qiang Chen;James Glimm - 通讯作者:
James Glimm
Some recent methods for partial differential equations of divergence form
- DOI:
10.1007/s00574-003-0005-4 - 发表时间:
2003-04-01 - 期刊:
- 影响因子:0.900
- 作者:
Gui-Qiang Chen - 通讯作者:
Gui-Qiang Chen
Entropy Solutions in L ∞ for the Euler Equations in Nonlinear Elastodynamics and Related Equations
- DOI:
10.1007/s00205-003-0284-3 - 发表时间:
2003-11-03 - 期刊:
- 影响因子:2.400
- 作者:
Gui-Qiang Chen;Bang-He Li;Tian-Hong Li - 通讯作者:
Tian-Hong Li
Gui-Qiang Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gui-Qiang Chen', 18)}}的其他基金
Conferences/Workshops on Partial Differential Equations and Related Analysis and Applications
偏微分方程及相关分析与应用会议/研讨会
- 批准号:
0935967 - 财政年份:2009
- 资助金额:
$ 12.81万 - 项目类别:
Standard Grant
Research on Nonlinear Partial Differential Equations in Conservation Laws and Related Applications
守恒定律中非线性偏微分方程的研究及相关应用
- 批准号:
0807551 - 财政年份:2008
- 资助金额:
$ 12.81万 - 项目类别:
Standard Grant
Mathematical Problems in Nonlinear Conservation Laws and Related Applications
非线性守恒定律中的数学问题及相关应用
- 批准号:
0505473 - 财政年份:2005
- 资助金额:
$ 12.81万 - 项目类别:
Standard Grant
Emphasis Year: Stochastic Analysis and Partial Differential Equations; Evanston, IL; 2004-2005
重点年份:随机分析和偏微分方程;
- 批准号:
0426172 - 财政年份:2004
- 资助金额:
$ 12.81万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Multi-Dimensional Problems for the Euler Equations of Compressible Fluid Flow and Related Problems in Hyperbolic Conservation Laws
FRG:合作研究:可压缩流体流动欧拉方程的多维问题及双曲守恒定律中的相关问题
- 批准号:
0244473 - 财政年份:2003
- 资助金额:
$ 12.81万 - 项目类别:
Standard Grant
Emphasis Year: Nonlinear Partial Differential Equations and Their Applications
重点年份:非线性偏微分方程及其应用
- 批准号:
0204455 - 财政年份:2002
- 资助金额:
$ 12.81万 - 项目类别:
Standard Grant
U.S.-China Cooperative Research: Nonlinear Partial Differential Equations in Fluid Dynamics and Related Problems
中美合作研究:流体动力学中的非线性偏微分方程及相关问题
- 批准号:
9987378 - 财政年份:2000
- 资助金额:
$ 12.81万 - 项目类别:
Standard Grant
Problems in Fluid Mechanics and Related Nonlinear Partial Differential Equations and Applications
流体力学及相关非线性偏微分方程问题及应用
- 批准号:
9971793 - 财政年份:1999
- 资助金额:
$ 12.81万 - 项目类别:
Continuing Grant
U.S.-France Cooperative Research: Mathematical Problems in Continuum Mechanics and Related Equations
美法合作研究:连续介质力学及相关方程的数学问题
- 批准号:
9726215 - 财政年份:1998
- 资助金额:
$ 12.81万 - 项目类别:
Standard Grant
Emphasis Year: Nonlinear Partial Differential Equations and Their Applications; Spring, 1998; Evanston, Illinois
重点年份:非线性偏微分方程及其应用;
- 批准号:
9708261 - 财政年份:1997
- 资助金额:
$ 12.81万 - 项目类别:
Standard Grant
相似海外基金
Theory and Solution Methods for Generalized Nash Equilibrium Problems Governed by Networks of Nonlinear Hyperbolic Conservation Laws
非线性双曲守恒律网络治理的广义纳什均衡问题的理论与求解方法
- 批准号:
423771718 - 财政年份:2019
- 资助金额:
$ 12.81万 - 项目类别:
Priority Programmes
Study of Limiting Methods for Computation of Conservation Laws and Other Hyperbolic Problems
守恒定律及其他双曲问题计算的极限方法研究
- 批准号:
1522585 - 财政年份:2015
- 资助金额:
$ 12.81万 - 项目类别:
Standard Grant
Multi-Dimensional Problems For Systems Of Conservation Laws
守恒定律体系的多维问题
- 批准号:
1408839 - 财政年份:2014
- 资助金额:
$ 12.81万 - 项目类别:
Standard Grant
Politics and problems on eco-resource conservation and eco-tourism promotion based on charismatic species and their habitats
基于魅力物种及其栖息地的生态资源保护和生态旅游促进的政治和问题
- 批准号:
25283008 - 财政年份:2013
- 资助金额:
$ 12.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
New developments on evolution equations and variational problems by geometric conservation laws
几何守恒定律演化方程和变分问题的新进展
- 批准号:
25800072 - 财政年份:2013
- 资助金额:
$ 12.81万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Nature, Culture, Conservation: History of science as an integrative framework for analysis of research on environmental problems, 1950-2010
自然、文化、保护:科学史作为环境问题研究分析的综合框架,1950-2010
- 批准号:
AH/J011525/1 - 财政年份:2012
- 资助金额:
$ 12.81万 - 项目类别:
Research Grant
Production ofthe environmental educationprogram towardsbiodiversity conservation -for the understanding toalien species problems-
制定生物多样性保护环境教育计划-为了了解外来物种问题-
- 批准号:
22300276 - 财政年份:2010
- 资助金额:
$ 12.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Workshop to Develop a National Network of Conservation Professionals to Address Complex and Pressing Conservation Problems in Canada
建立全国保护专业人员网络以解决加拿大复杂而紧迫的保护问题的研讨会
- 批准号:
379656-2008 - 财政年份:2008
- 资助金额:
$ 12.81万 - 项目类别:
Strategic Workshops Program
Numerical methods for systems of nonlinear hyperbolic conservation laws applied to gravity-driven flow problems
应用于重力驱动流动问题的非线性双曲守恒定律系统的数值方法
- 批准号:
249488-2003 - 财政年份:2007
- 资助金额:
$ 12.81万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for systems of nonlinear hyperbolic conservation laws applied to gravity-driven flow problems
应用于重力驱动流动问题的非线性双曲守恒定律系统的数值方法
- 批准号:
249488-2003 - 财政年份:2006
- 资助金额:
$ 12.81万 - 项目类别:
Discovery Grants Program - Individual