Mathematical Problems in Nonlinear Conservation Laws and Related Applications
非线性守恒定律中的数学问题及相关应用
基本信息
- 批准号:0505473
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-06-15 至 2010-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator studies mathematical problems involvingshock waves in nonlinear conservation laws and related applications,along with the analysis and development of efficient new nonlineartechniques. Shock waves often occur in solutions of nonlinearconservation laws of hyperbolic type, mixed elliptic-hyperbolic type,and mixed parabolic-hyperbolic type. The proposed work is in threeinterrelated topics corresponding to the nonlinear conservation lawsof three types:(1) multidimensional transonic shocks, free boundary problems, andrelated nonlinear problems;(2) divergence-measure fields for entropy solutions with shocks tohyperbolic conservation laws;(3) solutions with shocks to anisotropic degeneratediffusion-convection equations and related nonlinear problems.In each, both nonlinear problems involving shock waves and newmathematical techniques are proposed. The unifying mathematical themeof the three topics is shock wave problems and related nonlineartechniques. The objective of this proposed program is twofold:(1) investigate important nonlinear problems involving shockwaves to gain new physical insights, to guide the formulation ofefficient nonlinear techniques, and to find the correct mathematicalframeworks in which to pose the nonlinear conservation laws anddevelop the numerical methods that converge stably and rapidly;(2) analyze and develop nonlinear techniques including free boundarymethods, kinetic methods, compensated regularity methods, and relatedpotential techniques to formulate new, more efficient nonlineartechniques and to solve various more important nonlinear problemsin conservation laws and related applications. The mathematical problems in this research program arise in suchareas as gas dynamics, hydraulics, elasticity, multiphase flow,combustion, magnetohydrodynamics, semiconductor, phase transitions,kinetic theory, biophysics, sedimentation-consolidation processes,material science, and image processing.The award will support research on the solvability of thesemathematical problems involving shock waves in nonlinear conservationlaws and related applications, the qualitative behavior of theirsolutions, as well as the analysis and development of nonlinearmethods in applied analysis and numerical analysis.This research will lead to a deeper understanding of nonlinearphenomena, especially for shock waves, and will provide moreefficient nonlinear methods and theories for applications.Given the richness and the range of applications for whichshock waves are involved in nature, this project will havea broad impact by understanding the behavior of shock waves anddeveloping methodology and a set of nonlinear techniquesfor their further study.
研究人员研究非线性守恒律中涉及激波的数学问题和相关应用,以及有效的新的非线性技术的分析和发展。激波常出现在双曲型、椭圆-双曲型和抛物型-双曲型非线性守恒律的解中。我们的工作分为三个主题,分别对应于三类非线性守恒律:(1)多维跨音速激波、自由边界问题及相关的非线性问题;(2)双曲型守恒律中含激波的熵解的散度场;(3)各向异性退化扩散-对流方程及相关非线性问题的激波解。这三个主题的统一数学主题是激波问题和相关的非线性技术。该计划的目标有两个:(1)研究涉及激波的重要的非线性问题,以获得新的物理见解,指导有效的非线性技术的制定,并找到提出非线性守恒定律的正确的数学框架,并开发稳定且快速收敛的数值方法;(2)分析和发展非线性技术,包括自由边界方法、动力学方法、补偿正则性方法和相关势能技术,以形成新的、更有效的非线性技术,并解决守恒定律及其相关应用中的各种更重要的非线性问题。该研究项目涉及的数学问题包括:气体动力学、水力学、弹性力学、多相流、燃烧、磁流体动力学、半导体、相变、动力学、生物物理、沉积-固结过程、材料科学和图像处理。该奖项将支持关于非线性守恒律中涉及激波的数学问题的可解性及其相关应用的研究,以及应用分析和数值分析中非线性方法的分析和发展。这项研究将使人们对非线性现象,特别是激波,有更深入的了解。鉴于冲击波在自然界中的丰富性和应用范围,了解冲击波的行为并为其进一步研究发展方法论和一套非线性技术将产生广泛的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gui-Qiang Chen其他文献
Kolmogorov’s Theory of Turbulence and Inviscid Limit of the Navier-Stokes Equations in $${\mathbb {R}^3}$$
- DOI:
10.1007/s00220-011-1404-9 - 发表时间:
2012-01-10 - 期刊:
- 影响因子:2.600
- 作者:
Gui-Qiang Chen;James Glimm - 通讯作者:
James Glimm
Some recent methods for partial differential equations of divergence form
- DOI:
10.1007/s00574-003-0005-4 - 发表时间:
2003-04-01 - 期刊:
- 影响因子:0.900
- 作者:
Gui-Qiang Chen - 通讯作者:
Gui-Qiang Chen
Entropy Solutions in L ∞ for the Euler Equations in Nonlinear Elastodynamics and Related Equations
- DOI:
10.1007/s00205-003-0284-3 - 发表时间:
2003-11-03 - 期刊:
- 影响因子:2.400
- 作者:
Gui-Qiang Chen;Bang-He Li;Tian-Hong Li - 通讯作者:
Tian-Hong Li
Gui-Qiang Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gui-Qiang Chen', 18)}}的其他基金
Conferences/Workshops on Partial Differential Equations and Related Analysis and Applications
偏微分方程及相关分析与应用会议/研讨会
- 批准号:
0935967 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
Research on Nonlinear Partial Differential Equations in Conservation Laws and Related Applications
守恒定律中非线性偏微分方程的研究及相关应用
- 批准号:
0807551 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Emphasis Year: Stochastic Analysis and Partial Differential Equations; Evanston, IL; 2004-2005
重点年份:随机分析和偏微分方程;
- 批准号:
0426172 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Multi-Dimensional Problems for the Euler Equations of Compressible Fluid Flow and Related Problems in Hyperbolic Conservation Laws
FRG:合作研究:可压缩流体流动欧拉方程的多维问题及双曲守恒定律中的相关问题
- 批准号:
0244473 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Standard Grant
Nonlinear Problems in Conservation Laws and Fluid Dynamics and Related Partial Differential Equations
守恒定律和流体动力学中的非线性问题及相关偏微分方程
- 批准号:
0204225 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Standard Grant
Emphasis Year: Nonlinear Partial Differential Equations and Their Applications
重点年份:非线性偏微分方程及其应用
- 批准号:
0204455 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Standard Grant
U.S.-China Cooperative Research: Nonlinear Partial Differential Equations in Fluid Dynamics and Related Problems
中美合作研究:流体动力学中的非线性偏微分方程及相关问题
- 批准号:
9987378 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Standard Grant
Problems in Fluid Mechanics and Related Nonlinear Partial Differential Equations and Applications
流体力学及相关非线性偏微分方程问题及应用
- 批准号:
9971793 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Continuing Grant
U.S.-France Cooperative Research: Mathematical Problems in Continuum Mechanics and Related Equations
美法合作研究:连续介质力学及相关方程的数学问题
- 批准号:
9726215 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Standard Grant
Emphasis Year: Nonlinear Partial Differential Equations and Their Applications; Spring, 1998; Evanston, Illinois
重点年份:非线性偏微分方程及其应用;
- 批准号:
9708261 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Mathematical analysis of variational problems appearing in several nonlinear Schrodinger equations
几个非线性薛定谔方程中出现的变分问题的数学分析
- 批准号:
23KJ0293 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Study on free boundary problems arising in mathematical ecology and related nonlinear diffusion equations
数学生态学中自由边界问题及相关非线性扩散方程的研究
- 批准号:
19K03573 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidations on unexplored regions of problems related to the criticality of nonlinear dissipative and dispersive structures in mathematical models
数学模型中与非线性耗散和色散结构的关键性相关问题的未探索领域的阐明
- 批准号:
25220702 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (S)
Mathematical Analysis of various nonlinear problems for phenomena in continua
连续体现象的各种非线性问题的数学分析
- 批准号:
18340042 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on Nonlinear Scalarization Methods for Set-Valued Maps and its Applications into Mathematical Programming Problems and Statistical Science.
集值图的非线性标化方法及其在数学规划问题和统计科学中的应用研究。
- 批准号:
17540108 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Analysis for Problems in Nonlinear Optics
非线性光学问题的数学分析
- 批准号:
0505681 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Problems for Nonlinear Inversion in Intermediate and High Contrast Media
中高对比度介质中非线性反演的数学问题
- 批准号:
9971209 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Investigation of Nonlinear Free Boundary Problems in Stokes Flow
斯托克斯流中非线性自由边界问题的数学研究
- 批准号:
9803358 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Investigations of Nonlinear Free Boundary Problems in Stokes Flow
斯托克斯流中非线性自由边界问题的数学研究
- 批准号:
9803167 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Standard Grant
Two Problems: Nonlinear Wave Equations and Mathematical Neurobiology
两个问题:非线性波动方程和数学神经生物学
- 批准号:
9896077 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant