Data Structures for Multivariate Statistical Process Control

多元统计过程控制的数据结构

基本信息

  • 批准号:
    9713518
  • 负责人:
  • 金额:
    $ 17.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-09-01 至 2001-08-31
  • 项目状态:
    已结题

项目摘要

9713518 Runger This award provides funding to develop guidelines for a data structure for multivariate statistical process control. A process control algorithm should detect a process anomaly as quickly as possible, without incurring excessive false alarms. However, in practice, (1) one can often select from among many variables (even hundreds) that are available, (2) the time order of the original data is not suitable for direct input into the algorithm, a synchronization of variables is needed, (3) variables have different measurement frequencies, (4) some variables are more responsive to process upsets than others, (5) some variables can be computed as functions of the others, and (6) a partition of selected variables is important to reduce complexity, improve performance, and simplify the interpretation of the control algorithm. A mathematical description of process data and process upsets will be used to develop recommendations for preprocessing the data to address these issues. Process data will be used to validate recommendations. If successful, this project will affect the type and structure of process data that is collected for process control. This will include the process measurements that are recorded, the frequency of measurements, the time ordering of measurements, as well as how the measurements will be allocated (or partitioned) to particular control algorithms. Preliminary research has shown that a data structure is an important element of a process control strategy that becomes a critical element as the number of variables under analysis increase. Recommendations from this project will provide a synergy between the data structures and the control algorithms to increase the usefulness, application, and performance of control methods. The results will also apply to data structures in areas such as neural networks, data mining, and signal processing, as well as process control.
9713518荣格该奖项为开发多元统计过程控制的数据结构指南提供资金。过程控制算法应该尽可能快地检测到过程异常,而不会引起过多的错误警报。然而,在实践中,(1)人们经常可以从许多(甚至数百个)可用的变量中进行选择,(2)原始数据的时间顺序不适合直接输入到算法中,需要变量的同步,(3)变量具有不同的测量频率,(4)一些变量比其他变量对过程扰动的响应更快,(5)一些变量可以作为其他变量的函数来计算,以及(6)所选变量的划分对于降低复杂性、提高性能和简化控制算法的解释是重要的。将使用过程数据和过程颠覆的数学描述来制定对数据进行预处理的建议,以解决这些问题。流程数据将用于验证建议。如果成功,该项目将影响为过程控制收集的过程数据的类型和结构。这将包括记录的过程测量、测量的频率、测量的时间排序,以及如何将测量分配(或分割)给特定的控制算法。初步研究表明,数据结构是过程控制策略的重要元素,随着分析变量数量的增加,数据结构成为关键元素。该项目的建议将在数据结构和控制算法之间提供协同作用,以提高控制方法的有用性、应用和性能。这些结果也将适用于神经网络、数据挖掘、信号处理以及过程控制等领域的数据结构。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

George Runger其他文献

Whole blood FPR1 mRNA expression identifies both non-small cell and small cell lung cancer
  • DOI:
    10.1016/j.jtho.2015.12.058
  • 发表时间:
    2016-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Scott M. Morris;Anil Vachani;Harvey I. Pass;William N. Rom;Glen J. Weiss;D Kyle Hogarth;George Runger;Robert J. Penny;Kirk Ryden;Donald Richards;W Troy Shelton;David W. Mallery
  • 通讯作者:
    David W. Mallery

George Runger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('George Runger', 18)}}的其他基金

Collaborative Research: Active Statistical Learning: Ensembles, Manifolds, and Optimal Experimental Design
协作研究:主动统计学习:集成、流形和最优实验设计
  • 批准号:
    1537898
  • 财政年份:
    2015
  • 资助金额:
    $ 17.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Leveraging Noncontact Dimensional Metrology to Understand Complex Part-to-Part Variation
合作研究:利用非接触式尺寸计量来理解复杂的零件间差异
  • 批准号:
    1265713
  • 财政年份:
    2013
  • 资助金额:
    $ 17.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Blind Discovery of Variation Sources for Visualization by Multidisciplinary Teams
协作研究:多学科团队盲目发现可视化变异源
  • 批准号:
    0825331
  • 财政年份:
    2008
  • 资助金额:
    $ 17.75万
  • 项目类别:
    Standard Grant
SGER: Feature Selection with Ensembles for Complex Systems
SGER:复杂系统的集成特征选择
  • 批准号:
    0743160
  • 财政年份:
    2007
  • 资助金额:
    $ 17.75万
  • 项目类别:
    Standard Grant
Self-Learning of Decision Rules for Process Control
过程控制决策规则的自学习
  • 批准号:
    0355575
  • 财政年份:
    2004
  • 资助金额:
    $ 17.75万
  • 项目类别:
    Standard Grant
Case-Based Reasoning for Engineering Statistics
工程统计案例推理
  • 批准号:
    0126855
  • 财政年份:
    2001
  • 资助金额:
    $ 17.75万
  • 项目类别:
    Standard Grant
GOALI: Adjustment and Monitoring Methods for Multiple-Stream and Process-Oriented Quality Control
GOALI:多流和面向过程的质量控制的调整和监控方法
  • 批准号:
    0085041
  • 财政年份:
    2000
  • 资助金额:
    $ 17.75万
  • 项目类别:
    Standard Grant
Generalized Linear Model-Based Process Control of Multivariate Measurements
基于广义线性模型的多变量测量过程控制
  • 批准号:
    9900113
  • 财政年份:
    1999
  • 资助金额:
    $ 17.75万
  • 项目类别:
    Standard Grant
Research Initiation Award: Adaptive Statistical Process Control
研究启动奖:自适应统计过程控制
  • 批准号:
    9309270
  • 财政年份:
    1993
  • 资助金额:
    $ 17.75万
  • 项目类别:
    Continuing Grant

相似海外基金

Multivariate analysis methods for optical imaging measurements of macroscopic inhomogeneous structures
宏观非均匀结构光学成像测量的多元分析方法
  • 批准号:
    23K03283
  • 财政年份:
    2023
  • 资助金额:
    $ 17.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exploiting the Combinatorial Structures Found in Constraint Programming Models as Multivariate Distributions
利用约束规划模型中的组合结构作为多元分布
  • 批准号:
    RGPIN-2017-05783
  • 财政年份:
    2022
  • 资助金额:
    $ 17.75万
  • 项目类别:
    Discovery Grants Program - Individual
Exploiting the Combinatorial Structures Found in Constraint Programming Models as Multivariate Distributions
利用约束规划模型中的组合结构作为多元分布
  • 批准号:
    RGPIN-2017-05783
  • 财政年份:
    2021
  • 资助金额:
    $ 17.75万
  • 项目类别:
    Discovery Grants Program - Individual
Exploiting the Combinatorial Structures Found in Constraint Programming Models as Multivariate Distributions
利用约束规划模型中的组合结构作为多元分布
  • 批准号:
    RGPIN-2017-05783
  • 财政年份:
    2020
  • 资助金额:
    $ 17.75万
  • 项目类别:
    Discovery Grants Program - Individual
Exploiting the Combinatorial Structures Found in Constraint Programming Models as Multivariate Distributions
利用约束规划模型中的组合结构作为多元分布
  • 批准号:
    RGPIN-2017-05783
  • 财政年份:
    2019
  • 资助金额:
    $ 17.75万
  • 项目类别:
    Discovery Grants Program - Individual
Exploiting the Combinatorial Structures Found in Constraint Programming Models as Multivariate Distributions
利用约束规划模型中的组合结构作为多元分布
  • 批准号:
    RGPIN-2017-05783
  • 财政年份:
    2018
  • 资助金额:
    $ 17.75万
  • 项目类别:
    Discovery Grants Program - Individual
Exploiting the Combinatorial Structures Found in Constraint Programming Models as Multivariate Distributions
利用约束规划模型中的组合结构作为多元分布
  • 批准号:
    RGPIN-2017-05783
  • 财政年份:
    2017
  • 资助金额:
    $ 17.75万
  • 项目类别:
    Discovery Grants Program - Individual
Structures of symmetry for discrete and continuous multivariate analysis and its combination
离散和连续多元分析的对称结构及其组合
  • 批准号:
    15K05006
  • 财政年份:
    2015
  • 资助金额:
    $ 17.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SFB 475: Reduction of Complexity for Multivariate Data Structures
SFB 475:降低多元数据结构的复杂性
  • 批准号:
    5481508
  • 财政年份:
    1997
  • 资助金额:
    $ 17.75万
  • 项目类别:
    Collaborative Research Centres
Mathematical Sciences: Algebraic, Geometric and Combinatorial Structures Related to Multivariate Hypergeometric Functions
数学科学:与多元超几何函数相关的代数、几何和组合结构
  • 批准号:
    9625511
  • 财政年份:
    1996
  • 资助金额:
    $ 17.75万
  • 项目类别:
    Continuing grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了