GOALI: Adjustment and Monitoring Methods for Multiple-Stream and Process-Oriented Quality Control
GOALI:多流和面向过程的质量控制的调整和监控方法
基本信息
- 批准号:0085041
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-09-15 至 2005-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Multivariate statistical process control research has produced tools that can be used to identify when irregularities in production occur and to characterize the components of this variation. The diagnosis and control actions, in the sense of process adjustment, are not modeled and it is up to the process engineer to interpret and correct causes of variation. The presence of quality characteristics that drift with time (auto-correlation) and that vary in similar ways across several characteristics (cross-correlation) makes multivariate statistical process control a difficult task. For these reasons, interest exists on integrating process adjustment techniques with statistical process monitoring tools. The major components of variation in quality data can be found by decomposing the data according to principal component analysis, but this is a data-oriented approach and not based on any process knowledge, which makes interpretation difficult. The process-oriented basis representation (POBREP) analysis uses process knowledge to decompose quality data into cause-associated components. In POBREP, each potential production problem is associated with one basis element. This research investigates the thesis that POBREP can provide an effective tool for process adjustment. It has been shown previously how POBREP can be used for process monitoring purposes. For process adjustment, the following questions, among others, will be investigated: (1) What are the appropriate statistical models for adjustment that incorporate POBREP knowledge? (2) When is POBREP likely to provide a performance advantage? and (3) Can POBREP be applied effectively to a wafer fabrication process? There are several benefits associated with this research. A monitoring and adjustment strategy based on anticipated problems and disturbances can transform the ineffective performance of an omnibus control strategy. The work includes collaboration between researchers at Arizona State, Intel, and Penn State. The collaboration includes eight-month internships at Intel for Penn State and Arizona State graduate research assistants, visits to Intel by Penn State faculty, and regular visits to Intel by Arizona State faculty. There are extensive infrastructure benefits related to this collaborative approach: (1) synergistic benefits of coordinated research from four previously separately sponsored NSF researchers; (2) GOALI benefits, including engineers in the classroom, faculty visits to industry, etc.; (3) the opportunity to leverage results using existing laboratory equipment; and (4) to enhance existing courses in Applied Statistics at Penn State and Arizona State.
多变量统计过程控制研究已经产生了一些工具,可以用来识别生产中何时出现不规则现象,并描述这种变化的组成部分。 在过程调整的意义上,诊断和控制动作没有被建模,并且由过程工程师来解释和纠正变化的原因。 质量特性随时间漂移(自相关)和以类似方式在几个特性之间变化(互相关)的存在使得多变量统计过程控制成为一项困难的任务。由于这些原因,存在的兴趣与统计过程监控工具集成的过程调整技术。 通过主成分分析法对数据进行分解,可以找出质量数据变化的主要成分,但这是一种面向数据的方法,不基于任何工艺知识,因此难以进行解释。面向过程的基础表示(POBREP)分析使用过程知识将质量数据分解为与原因相关的组件。 在POBREP中,每个潜在的生产问题都与一个基本要素相关联。本研究探讨了POBREP可以提供一个有效的过程调整工具的论点。 前面已经介绍了POBREP如何用于过程监控。 对于流程调整,将调查以下问题:(1)纳入POBREP知识的调整的适当统计模型是什么? (2)POBREP何时可能提供性能优势?以及(3)POBREP能否有效地应用于晶片制造工艺?这项研究有几个好处。 基于预期问题和干扰的监控和调整策略可以改变综合控制策略的无效性能。 这项工作包括亚利桑那州立大学、英特尔和宾夕法尼亚州立大学的研究人员之间的合作。 此次合作包括在英特尔为宾夕法尼亚州立大学和亚利桑那州立大学的研究生研究助理提供为期八个月的实习机会,宾夕法尼亚州立大学的教职员工访问英特尔,亚利桑那州立大学的教职员工定期访问英特尔。这种合作方法具有广泛的基础设施优势:(1)来自先前分别资助的四位NSF研究人员的协调研究的协同效益;(2)GOALI的好处,包括工程师在课堂上,教师访问工业等; (3)利用现有实验室设备利用结果的机会;(4)加强宾夕法尼亚州立大学和亚利桑那州立大学应用统计学的现有课程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Runger其他文献
Whole blood FPR1 mRNA expression identifies both non-small cell and small cell lung cancer
- DOI:
10.1016/j.jtho.2015.12.058 - 发表时间:
2016-02-01 - 期刊:
- 影响因子:
- 作者:
Scott M. Morris;Anil Vachani;Harvey I. Pass;William N. Rom;Glen J. Weiss;D Kyle Hogarth;George Runger;Robert J. Penny;Kirk Ryden;Donald Richards;W Troy Shelton;David W. Mallery - 通讯作者:
David W. Mallery
George Runger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Runger', 18)}}的其他基金
Collaborative Research: Active Statistical Learning: Ensembles, Manifolds, and Optimal Experimental Design
协作研究:主动统计学习:集成、流形和最优实验设计
- 批准号:
1537898 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Leveraging Noncontact Dimensional Metrology to Understand Complex Part-to-Part Variation
合作研究:利用非接触式尺寸计量来理解复杂的零件间差异
- 批准号:
1265713 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Blind Discovery of Variation Sources for Visualization by Multidisciplinary Teams
协作研究:多学科团队盲目发现可视化变异源
- 批准号:
0825331 - 财政年份:2008
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SGER: Feature Selection with Ensembles for Complex Systems
SGER:复杂系统的集成特征选择
- 批准号:
0743160 - 财政年份:2007
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Self-Learning of Decision Rules for Process Control
过程控制决策规则的自学习
- 批准号:
0355575 - 财政年份:2004
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Case-Based Reasoning for Engineering Statistics
工程统计案例推理
- 批准号:
0126855 - 财政年份:2001
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Generalized Linear Model-Based Process Control of Multivariate Measurements
基于广义线性模型的多变量测量过程控制
- 批准号:
9900113 - 财政年份:1999
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Data Structures for Multivariate Statistical Process Control
多元统计过程控制的数据结构
- 批准号:
9713518 - 财政年份:1997
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Research Initiation Award: Adaptive Statistical Process Control
研究启动奖:自适应统计过程控制
- 批准号:
9309270 - 财政年份:1993
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似海外基金
Development of a pH adjustment system for monitoring genotoxic and contaminates of concern in drinking waters and wastewaters
开发 pH 调节系统,用于监测饮用水和废水中的遗传毒性和污染物
- 批准号:
556352-2020 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Engage Plus Grants for Colleges
Development of a pH adjustment system for monitoring genotoxic compounds in drinking water
开发用于监测饮用水中遗传毒性化合物的 pH 调节系统
- 批准号:
538624-2019 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Applied Research and Development Grants - Level 1
Minimizing Error in Mobile Air Pollution Monitoring Campaigns: Temporal Adjustment Factors for Mobile Air Pollution Monitoring
最小化移动空气污染监测活动中的误差:移动空气污染监测的时间调整因素
- 批准号:
528856-2018 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Dynamic Conflict Management: Using performance monitoring to guide stable adjustment in task performance and flexible task selection in self-organized multitasking environments.
动态冲突管理:利用性能监控指导自组织多任务环境中任务性能的稳定调整和灵活的任务选择。
- 批准号:
274918212 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Priority Programmes
Development of learning materials using eating habits monitoring for nursing student life adjustment ability development
利用饮食习惯监测开发护生生活调整能力的学习材料
- 批准号:
25463321 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mitochondrial- and lysosomal-targeted iron chelators for the monitoring and adjustment of cellular labile iron pools
用于监测和调整细胞不稳定铁库的线粒体和溶酶体靶向铁螯合剂
- 批准号:
BB/J008060/1 - 财政年份:2012
- 资助金额:
$ 20万 - 项目类别:
Research Grant
Mitochondrial- and lysosomal-targeted iron chelators for the monitoring and adjustment of cellular labile iron pools
用于监测和调整细胞不稳定铁库的线粒体和溶酶体靶向铁螯合剂
- 批准号:
BB/J005223/1 - 财政年份:2012
- 资助金额:
$ 20万 - 项目类别:
Research Grant
Automated model complexity monitoring and adjustment for simulation-based design of dynamic systems
自动模型复杂性监控和调整,用于动态系统的基于仿真的设计
- 批准号:
329318-2006 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Automated model complexity monitoring and adjustment for simulation-based design of dynamic systems
自动模型复杂性监控和调整,用于动态系统的基于仿真的设计
- 批准号:
329318-2006 - 财政年份:2009
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Automated model complexity monitoring and adjustment for simulation-based design of dynamic systems
自动模型复杂性监控和调整,用于动态系统的基于仿真的设计
- 批准号:
329318-2006 - 财政年份:2008
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual