Self-Learning of Decision Rules for Process Control
过程控制决策规则的自学习
基本信息
- 批准号:0355575
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-15 至 2008-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this project is to develop a widely-applicable, automated method to learn decision rules from the data in a sensor network. The decision rules that are learned will detect anomalies from the normal operating environment when neither the normal operations nor the anomalies to be detected are pre-specified. The learner will also incorporate categorical as well as numerical data, identify contributors to a decision-rule signal when it occurs, and adapt the rules over time as requirements for the sensor system change. Basically, it will adapt itself to the characteristics of the normal environment, handle categorical and numerical data, self-train, and then detect anomalies. Measures of variable importance will be developed to provide guidance to diagnose a detected signal. Such measures will also be used to adaptively to improve the number of variables that can be incorporated into a solution. Preliminary experiments will be expanded to test the learner with simulated and real data. The learner will be compared to traditional, optimal solutions when they exist and then evaluated under more stressful conditions in which traditional solutions fail.Success of this project will provide network intelligence that is inexpensive and easy to install, maintain, and mange. These results can be used to eventually develop an embedded module (intelligence) that can be made available in sensor-network infrastructures. The flexibility of the derived decision rules can incorporate highly nonlinear models. This flexibility and the conceptual simplicity of the approach, along with the computational resources now widely available, can generate a surge of interest in this automated approach. The methods can be useful to manufacturing and in areas such as biological, civil, and transportation monitoring. Also, the measures for variable importance can be applied to interrogate other learning algorithms in complex applications.
这个项目的目标是开发一种广泛适用的自动化方法来从传感器网络的数据中学习决策规则。当未预先指定正常操作或要检测的异常时,学习的决策规则将从正常操作环境中检测异常。学习者还将结合分类数据和数字数据,在决策规则信号发生时识别其贡献者,并随着传感器系统需求的变化而随时间调整规则。基本上,它会适应正常环境的特征,处理分类和数值数据,自我训练,然后检测异常。将开发不同重要性的措施,以提供诊断检测信号的指导。这些措施还将用于自适应地改善可纳入解决方案的变量数量。初步实验将扩大到用模拟和真实数据测试学习者。学员将与传统的最佳解决方案(如果存在)进行比较,然后在传统解决方案失败的更大压力条件下进行评估。该项目的成功将提供廉价且易于安装、维护和管理的网络智能。这些结果可用于最终开发可在传感器网络基础设施中使用的嵌入式模块(智能)。派生的决策规则的灵活性可以结合高度非线性的模型。这种方法的灵活性和概念上的简单性,以及现在广泛可用的计算资源,可以产生对这种自动化方法的兴趣激增。这些方法可用于制造以及生物、民用和交通监测等领域。此外,变量重要性的度量也可用于在复杂应用中询问其他学习算法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Runger其他文献
Whole blood FPR1 mRNA expression identifies both non-small cell and small cell lung cancer
- DOI:
10.1016/j.jtho.2015.12.058 - 发表时间:
2016-02-01 - 期刊:
- 影响因子:
- 作者:
Scott M. Morris;Anil Vachani;Harvey I. Pass;William N. Rom;Glen J. Weiss;D Kyle Hogarth;George Runger;Robert J. Penny;Kirk Ryden;Donald Richards;W Troy Shelton;David W. Mallery - 通讯作者:
David W. Mallery
George Runger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Runger', 18)}}的其他基金
Collaborative Research: Active Statistical Learning: Ensembles, Manifolds, and Optimal Experimental Design
协作研究:主动统计学习:集成、流形和最优实验设计
- 批准号:
1537898 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Leveraging Noncontact Dimensional Metrology to Understand Complex Part-to-Part Variation
合作研究:利用非接触式尺寸计量来理解复杂的零件间差异
- 批准号:
1265713 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Blind Discovery of Variation Sources for Visualization by Multidisciplinary Teams
协作研究:多学科团队盲目发现可视化变异源
- 批准号:
0825331 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
SGER: Feature Selection with Ensembles for Complex Systems
SGER:复杂系统的集成特征选择
- 批准号:
0743160 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
Case-Based Reasoning for Engineering Statistics
工程统计案例推理
- 批准号:
0126855 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Standard Grant
GOALI: Adjustment and Monitoring Methods for Multiple-Stream and Process-Oriented Quality Control
GOALI:多流和面向过程的质量控制的调整和监控方法
- 批准号:
0085041 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Standard Grant
Generalized Linear Model-Based Process Control of Multivariate Measurements
基于广义线性模型的多变量测量过程控制
- 批准号:
9900113 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
Data Structures for Multivariate Statistical Process Control
多元统计过程控制的数据结构
- 批准号:
9713518 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
Research Initiation Award: Adaptive Statistical Process Control
研究启动奖:自适应统计过程控制
- 批准号:
9309270 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Decision-Embedded Deep Learning for Transit Systems
交通系统决策嵌入式深度学习
- 批准号:
2409847 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Clinical Decision Support System for Early Detection of Cognitive Decline Using Electronic Health Records and Deep Learning
利用电子健康记录和深度学习早期检测认知衰退的临床决策支持系统
- 批准号:
10603902 - 财政年份:2023
- 资助金额:
-- - 项目类别:
CAREER: Decision Making, Learning, and Incentive Design in Multilayer Networks
职业:多层网络中的决策、学习和激励设计
- 批准号:
2416311 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Sequential Decision Making with Imperfect Information: Machine Learning and Information Theory
不完美信息的顺序决策:机器学习和信息论
- 批准号:
23K17547 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Integrated models of learning and decision making in complex tasks
复杂任务中学习和决策的集成模型
- 批准号:
DE230100171 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
Electrocardiogram-based deep learning and decision analysis to improve atrial fibrillation risk estimation
基于心电图的深度学习和决策分析改善房颤风险评估
- 批准号:
10722762 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Reinforcement learning analysis of the impact of flood experience to the decision process of evacuation
强化学习分析洪水经历对疏散决策过程的影响
- 批准号:
23H01512 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Learning Decision Rules in Shifting Environments
学习不断变化的环境中的决策规则
- 批准号:
2242876 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
CRII: SCH: Domain-guided Machine Learning for Clinical Decision Support in Epilepsy
CRII:SCH:用于癫痫临床决策支持的领域引导机器学习
- 批准号:
2344731 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Developing Machine Learning Models for Decision Support and Allocation Optimization in Heart Transplantation
开发用于心脏移植决策支持和分配优化的机器学习模型
- 批准号:
10735348 - 财政年份:2023
- 资助金额:
-- - 项目类别: