Collaborative Research: Leveraging Noncontact Dimensional Metrology to Understand Complex Part-to-Part Variation

合作研究:利用非接触式尺寸计量来理解复杂的零件间差异

基本信息

  • 批准号:
    1265713
  • 负责人:
  • 金额:
    $ 16.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-15 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

The objective of this award is to develop a paradigm for identifying and visualizing complex part-to-part variation patterns in high-dimensional, spatially dense optical coordinate measuring machine (OCMM) data. OCMMs for noncontact dimensional metrology using laser and/or vision systems are one of the most promising emerging measurement technologies for quality control in discrete parts manufacturing. They produce large volumes of profile, point cloud, and high resolution image data that represent parametric and nonparametric surface geometry characteristics. The emphasis of this award on part-to-part variation is fundamentally different than the emphasis of current OCMM data analysis software, which fits geometric features separately to individual parts. To create the proposed paradigm for understanding variation, a manifold learning framework for identifying and visualizing the variation patterns will be developed, addressing challenges that include simultaneously identifying nonparametric and parametric variation patterns, handling measurement noise structure that differs from what is typically assumed in manifold learning, transforming OCMM data to reduce the extent of nonlinearity in the patterns, and handling heterogeneous data types obtained at different process stages.If successful, the results of this research will provide a powerful tool to facilitate the discovery and elimination of major root causes of manufacturing variation. Many discrete parts manufacturing industries invest heavily in OCMM equipment but lack knowledge discovery tools for fully utilizing the technology to understand part-to-part variation. This research will fill a critical void by creating a methodology for more effectively analyzing high-dimensional, spatially dense OCMM data. It will provide more sophisticated, badly needed variation reduction tools suitable for manufacturing six-sigma programs that employ modern OCMM technology, which will increase the competitiveness of US manufacturers. It will also allow for a greater return on investment in OCMM technology, which is expected to increase demand for the hardware/software systems and spark further advances in the technology.
该奖项的目标是开发一种范例,用于识别和可视化高维、空间密集的光学坐标测量机(OCMM)数据中复杂的零件到零件的变化模式。利用激光和/或视觉系统进行非接触式尺寸测量的OCMM是离散零件制造中最有前途的质量控制测量技术之一。它们会生成大量的轮廓、点云和高分辨率图像数据,这些数据表示参数曲面和非参数曲面的几何特征。这一奖项的重点是零件到零件的变化,与当前OCMM数据分析软件的重点根本不同,后者将几何特征分别匹配到单个零件。为了建立理解变异的范式,将开发一个识别和可视化变异模式的流形学习框架,解决包括同时识别非参数和参数变异模式、处理与流形学习中通常假设的不同的测量噪声结构、转换OCMM数据以减少模式中的非线性程度以及处理在不同过程阶段获得的不同数据类型的挑战。如果成功,本研究结果将为发现和消除制造变异的主要根本原因提供强有力的工具。许多离散零件制造行业在OCMM设备上投入了大量资金,但缺乏知识发现工具来充分利用该技术来了解零件到零件的差异。这项研究将通过创建一种更有效地分析高维、空间密集的OCMM数据的方法来填补一个关键的空白。它将提供更复杂、更迫切需要的差异减少工具,适合制造采用现代OCMM技术的六西格玛计划,这将增加美国制造商的竞争力。它还将使OCMM技术获得更大的投资回报,预计这将增加对硬件/软件系统的需求,并推动该技术的进一步进步。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

George Runger其他文献

Whole blood FPR1 mRNA expression identifies both non-small cell and small cell lung cancer
  • DOI:
    10.1016/j.jtho.2015.12.058
  • 发表时间:
    2016-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Scott M. Morris;Anil Vachani;Harvey I. Pass;William N. Rom;Glen J. Weiss;D Kyle Hogarth;George Runger;Robert J. Penny;Kirk Ryden;Donald Richards;W Troy Shelton;David W. Mallery
  • 通讯作者:
    David W. Mallery

George Runger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('George Runger', 18)}}的其他基金

Collaborative Research: Active Statistical Learning: Ensembles, Manifolds, and Optimal Experimental Design
协作研究:主动统计学习:集成、流形和最优实验设计
  • 批准号:
    1537898
  • 财政年份:
    2015
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Standard Grant
Collaborative Research: Blind Discovery of Variation Sources for Visualization by Multidisciplinary Teams
协作研究:多学科团队盲目发现可视化变异源
  • 批准号:
    0825331
  • 财政年份:
    2008
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Standard Grant
SGER: Feature Selection with Ensembles for Complex Systems
SGER:复杂系统的集成特征选择
  • 批准号:
    0743160
  • 财政年份:
    2007
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Standard Grant
Self-Learning of Decision Rules for Process Control
过程控制决策规则的自学习
  • 批准号:
    0355575
  • 财政年份:
    2004
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Standard Grant
Case-Based Reasoning for Engineering Statistics
工程统计案例推理
  • 批准号:
    0126855
  • 财政年份:
    2001
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Standard Grant
GOALI: Adjustment and Monitoring Methods for Multiple-Stream and Process-Oriented Quality Control
GOALI:多流和面向过程的质量控制的调整和监控方法
  • 批准号:
    0085041
  • 财政年份:
    2000
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Standard Grant
Generalized Linear Model-Based Process Control of Multivariate Measurements
基于广义线性模型的多变量测量过程控制
  • 批准号:
    9900113
  • 财政年份:
    1999
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Standard Grant
Data Structures for Multivariate Statistical Process Control
多元统计过程控制的数据结构
  • 批准号:
    9713518
  • 财政年份:
    1997
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Standard Grant
Research Initiation Award: Adaptive Statistical Process Control
研究启动奖:自适应统计过程控制
  • 批准号:
    9309270
  • 财政年份:
    1993
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
  • 批准号:
    2307222
  • 财政年份:
    2024
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Standard Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
  • 批准号:
    2307223
  • 财政年份:
    2024
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
  • 批准号:
    2312886
  • 财政年份:
    2023
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
  • 批准号:
    2312884
  • 财政年份:
    2023
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Standard Grant
Collaborative Research: SPARC: Conducting Collaborative Research and Leveraging Resources to Advance Spatial Archaeometry
协作研究:SPARC:开展协作研究并利用资源推进空间考古学
  • 批准号:
    2309809
  • 财政年份:
    2023
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Understanding the Limitations of Wireless Network Security Designs Leveraging Wireless Properties: New Threats and Defenses in Practice
协作研究:SaTC:核心:小型:了解利用无线特性的无线网络安全设计的局限性:实践中的新威胁和防御
  • 批准号:
    2316720
  • 财政年份:
    2023
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Standard Grant
Collaborative Research: Leveraging Crowd-AI Teams for Scalable Novelty Ratings of Heterogeneous Design Representations
协作研究:利用群体人工智能团队对异构设计表示进行可扩展的新颖性评级
  • 批准号:
    2231254
  • 财政年份:
    2023
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Standard Grant
Collaborative Research: Leveraging Crowd-AI Teams for Scalable Novelty Ratings of Heterogeneous Design Representations
协作研究:利用群体人工智能团队对异构设计表示进行可扩展的新颖性评级
  • 批准号:
    2231261
  • 财政年份:
    2023
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Standard Grant
Collaborative Research: Promoting Children's Learning About Biological Variability by Leveraging Simple Card Games
合作研究:利用简单的纸牌游戏促进儿童了解生物变异性
  • 批准号:
    2300602
  • 财政年份:
    2023
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Continuing Grant
Collaborative Research: Towards Engaged, Personalized and Transferable Learning of Secure Programming by Leveraging Real-World Security Vulnerabilities
协作研究:利用现实世界的安全漏洞实现安全编程的参与式、个性化和可转移学习
  • 批准号:
    2235976
  • 财政年份:
    2023
  • 资助金额:
    $ 16.74万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了