Generalized Linear Model-Based Process Control of Multivariate Measurements
基于广义线性模型的多变量测量过程控制
基本信息
- 批准号:9900113
- 负责人:
- 金额:$ 21.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-15 至 2003-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objectives of this research are to develop model-based control algorithms for multiple variables that operate when the measurements are a mixture of normally and non-normally distributed variables. Situations such as this arise frequently in industry, notably in the semiconductor industry, where the manufacturing and quality databases contain variables such as counts of defects or particle contaminates and electrical parameters, in addition to yield and other performance characteristics. These situations are also frequently encountered in the chemical and process industries. The research may also extend this algorithm to cascade processes; that is, processes with sequential manufacturing steps and significant added value processing occurring at each step. Processes in semiconductor manufacturing and chemical and process industries often add value sequentially over a number of process steps. Several process and product characteristics might be measured at each step. In this type of process, a shift in an upstream subset of variables can propagate into downstream subset variables although nothing is wrong with the process at later stages. A strategy that links the steps to improve process control will be incorporated into this algorithm. If successful, the results of this research will lead to better use of the data to improve the control of processes with many measurements of various types. As automated data acquisition systems become more prevalent, more processes will require the type of analysis proposed. In addition, the focus on cascade processes will improve the ability to detect and isolate process problems through a segmented design that considers the deviance from expected results at each processing step. This approach should providebetter control of these processes, and greater knowledge of the interrelationships between process steps. This integration of different measurement types in cascade processes should lead to new methodology forthe regression-adjustment of nonstandard data and contribute to the research in statistical deviancies. Furthermore, it is expected that the algorithms developed here will become benchmarks for other researchers to use for subsequent extensions to particular cascade processes.
本研究的目标是开发基于模型的控制算法的多个变量的测量时,正常和非正态分布的变量的混合物。 诸如此类的情况在工业中频繁出现,特别是在半导体工业中,其中制造和质量数据库除了产量和其他性能特性之外还包含诸如缺陷或颗粒污染物的计数和电参数的变量。 这些情况在化学和加工工业中也经常遇到。 该研究还可以将该算法扩展到级联过程,即具有顺序制造步骤和在每个步骤中发生的显著附加值处理的过程。 半导体制造、化学和加工工业的过程通常在多个过程步骤中顺序地增加价值。 在每个步骤中可能会测量几个过程和产品特性。在这种类型的过程中,上游变量子集的偏移可以传播到下游子集变量,尽管在后面的阶段过程没有任何问题。 一个战略,链接的步骤,以改善过程控制将被纳入这一算法。 如果成功的话,这项研究的结果将导致更好地利用数据,以改善各种类型的许多测量过程的控制。 随着自动化数据采集系统变得越来越普遍,更多的过程将需要所提出的分析类型。 此外,对级联过程的关注将通过考虑每个处理步骤与预期结果的偏差的分段设计来提高检测和隔离过程问题的能力。 这种方法应该提供对这些过程的更好的控制,以及对过程步骤之间的相互关系的更多了解。 这种不同测量类型在级联过程中的整合将为非标准数据的回归调整提供新的方法,并有助于统计偏差的研究。此外,预计这里开发的算法将成为其他研究人员用于后续扩展到特定级联过程的基准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Runger其他文献
Whole blood FPR1 mRNA expression identifies both non-small cell and small cell lung cancer
- DOI:
10.1016/j.jtho.2015.12.058 - 发表时间:
2016-02-01 - 期刊:
- 影响因子:
- 作者:
Scott M. Morris;Anil Vachani;Harvey I. Pass;William N. Rom;Glen J. Weiss;D Kyle Hogarth;George Runger;Robert J. Penny;Kirk Ryden;Donald Richards;W Troy Shelton;David W. Mallery - 通讯作者:
David W. Mallery
George Runger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Runger', 18)}}的其他基金
Collaborative Research: Active Statistical Learning: Ensembles, Manifolds, and Optimal Experimental Design
协作研究:主动统计学习:集成、流形和最优实验设计
- 批准号:
1537898 - 财政年份:2015
- 资助金额:
$ 21.14万 - 项目类别:
Standard Grant
Collaborative Research: Leveraging Noncontact Dimensional Metrology to Understand Complex Part-to-Part Variation
合作研究:利用非接触式尺寸计量来理解复杂的零件间差异
- 批准号:
1265713 - 财政年份:2013
- 资助金额:
$ 21.14万 - 项目类别:
Standard Grant
Collaborative Research: Blind Discovery of Variation Sources for Visualization by Multidisciplinary Teams
协作研究:多学科团队盲目发现可视化变异源
- 批准号:
0825331 - 财政年份:2008
- 资助金额:
$ 21.14万 - 项目类别:
Standard Grant
SGER: Feature Selection with Ensembles for Complex Systems
SGER:复杂系统的集成特征选择
- 批准号:
0743160 - 财政年份:2007
- 资助金额:
$ 21.14万 - 项目类别:
Standard Grant
Self-Learning of Decision Rules for Process Control
过程控制决策规则的自学习
- 批准号:
0355575 - 财政年份:2004
- 资助金额:
$ 21.14万 - 项目类别:
Standard Grant
Case-Based Reasoning for Engineering Statistics
工程统计案例推理
- 批准号:
0126855 - 财政年份:2001
- 资助金额:
$ 21.14万 - 项目类别:
Standard Grant
GOALI: Adjustment and Monitoring Methods for Multiple-Stream and Process-Oriented Quality Control
GOALI:多流和面向过程的质量控制的调整和监控方法
- 批准号:
0085041 - 财政年份:2000
- 资助金额:
$ 21.14万 - 项目类别:
Standard Grant
Data Structures for Multivariate Statistical Process Control
多元统计过程控制的数据结构
- 批准号:
9713518 - 财政年份:1997
- 资助金额:
$ 21.14万 - 项目类别:
Standard Grant
Research Initiation Award: Adaptive Statistical Process Control
研究启动奖:自适应统计过程控制
- 批准号:
9309270 - 财政年份:1993
- 资助金额:
$ 21.14万 - 项目类别:
Continuing Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
Pretest and shrinkage estimation methods for joint modeling of linear mixed models and the AFT model
线性混合模型和AFT模型联合建模的预测试和收缩估计方法
- 批准号:
573853-2022 - 财政年份:2022
- 资助金额:
$ 21.14万 - 项目类别:
University Undergraduate Student Research Awards
Search for graviton resonances in the linear dilaton/clockwork model
在线性膨胀/发条模型中搜索引力子共振
- 批准号:
573028-2022 - 财政年份:2022
- 资助金额:
$ 21.14万 - 项目类别:
University Undergraduate Student Research Awards
Construction of Solar Flare Prediction System Using Non-linear Force-Free Field Model of Solar Active Region
利用太阳活动区非线性无力场模型构建太阳耀斑预测系统
- 批准号:
22K03706 - 财政年份:2022
- 资助金额:
$ 21.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Model Selection for Ultra-high Dimensional and Non-linear Data
超高维和非线性数据的模型选择
- 批准号:
21K17715 - 财政年份:2021
- 资助金额:
$ 21.14万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RUI: Investigating Non-Linear Tissue Deformations Using Hydra Mouth Opening as a Quantitative in Vivo Model
RUI:使用水螅张口作为体内定量模型研究非线性组织变形
- 批准号:
2102916 - 财政年份:2021
- 资助金额:
$ 21.14万 - 项目类别:
Standard Grant
A non-linear fast model predictive control algorithm for spacecraft rendezvous and docking in the presence of a colliding object.
一种非线性快速模型预测控制算法,用于在存在碰撞物体的情况下航天器交会对接。
- 批准号:
565137-2021 - 财政年份:2021
- 资助金额:
$ 21.14万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Multi-Input Multi-Output Model-Based Adaptive Control with N on-linear models
基于多输入多输出模型的N个非线性模型自适应控制
- 批准号:
2746093 - 财政年份:2021
- 资助金额:
$ 21.14万 - 项目类别:
Studentship
Logarithmic Geometry and the Gauged Linear Sigma Model
对数几何和测量线性西格玛模型
- 批准号:
2001089 - 财政年份:2020
- 资助金额:
$ 21.14万 - 项目类别:
Standard Grant
Multifidelity Nonsmooth Optimization and Data-Driven Model Reduction for Robust Stabilization of Large-Scale Linear Dynamical Systems
用于大规模线性动力系统鲁棒稳定的多保真非光滑优化和数据驱动模型简化
- 批准号:
2012250 - 财政年份:2020
- 资助金额:
$ 21.14万 - 项目类别:
Continuing Grant
Optimal estimation strategy of generalized linear mixed joint model for longitudinal and survival ou
广义线性混合联合模型纵向和生存的最优估计策略
- 批准号:
551249-2020 - 财政年份:2020
- 资助金额:
$ 21.14万 - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




