U.S.-RoI-NI R&D Partnership: Ultrasensitive Nitrogen Sensor using Imprinted Polymer Assisted-Bacteria for Real-Time Monitoring of Water Quality
美国-RoI-NI R
基本信息
- 批准号:2130661
- 负责人:
- 金额:$ 62.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
An award is made to Rensselaer Polytechnic Institute to integrate four research groups from the three nations (the United States, Republic of Ireland and Northern Ireland, UK) to collaboratively design, build, validate, and field test a sensor system for the real-time detection of the three most commonly monitored forms of nitrogen: nitrate, nitrite, and ammonia/ammonium. Across the globe, freshwater and marine ecosystems are threatened by the effects of multiple environmental stressors including pollutants, invasive species, climate change, acidification, and excess nutrients. Excess nutrients are of particular importance since they are a driver of harmful algal blooms and “dead zones,” which are increasingly occurring around the world and can tip ecosystems toward significant and potentially catastrophic ecological events. While scientists strive to monitor, understand, and model the effects of excess nutrients, the current major challenge is to frequently monitor nitrogen [N] and phosphorus [P]) dynamics using real-time sensors at a reasonable cost. Having high-frequency, real-time nutrient data would allow basic and applied researchers around the world to integrate nutrient data with other data from existing sensor networks and remote sensing to address the global challenge of harmful algal blooms and dead zones. The research will also integration exciting K-12 outreach efforts among the four research groups. Using team experts from different disciplines, the groups will work together to create educational modules that spiral knowledge from basic to advanced information to educate and engage broadly. These groups will create week-long summer programs that integrate in-person and virtual educational experiences for high school students and college undergraduates to learn about the importance of analytical chemistry, engineering, and limnology to produce new generations of aquatic sensors. Students will visit and participate in the research of state-of-the-art facilities at Queen’s University, Dublin City University, and Rensselaer, as well as the sensor network that has been deployed by RPI on Lake George, NY (in collaboration with IBM Research and The Lake George Association).Most nutrient monitoring today by researchers depends on collecting water samples infrequently and bringing them back to the lab for benchtop testing. Newer technologies for measuring nutrients in aquatic ecosystems are single-use or require the frequent replacement of reagents. Moreover, the few nutrient sensors that are field-deployable with real-time data—such as phosphorus sensors—have a high cost ($30k) that strongly limits the number of nutrient sensors that can be deployed. Aquatic researchers need real-time, high-frequency, low-cost nutrient sensors with low detection limits that can be embedded in existing sensor networks that monitor suites of other water variables. This research team proposes to build a single sensor that uses 1) polymers to separate and concentrate each form of nitrogen, 2) bacteria to convert each form of nitrogen into a single form (i.e., nitrite), 3) advanced 3D printed microfluidics to ensure routes toward the active sensor in a complete analyzer platform for field deployment, and 4) a more sensitive detection system using novel ultrasensitive detectors. Monitoring the real-time dynamics of aquatic nutrients in complex natural environments has the potential to bring transformative new insights into how these nutrients impact aquatic ecosystems, with a focus on the global issue of harmful algal blooms. Such insights are crucial for improving capabilities to understand, predict, and mitigate these impacts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Rensselaer Polytechnic Institute获得了一个奖项,以整合来自三个国家(美国,爱尔兰共和国和英国北方爱尔兰)的四个研究小组,共同设计,构建,验证和现场测试传感器系统,用于实时检测三种最常见的氮监测形式:硝酸盐,亚硝酸盐和氨/铵。在地球仪,淡水和海洋生态系统受到多种环境压力因素的威胁,包括污染物、入侵物种、气候变化、酸化和营养过剩。过量的营养物质特别重要,因为它们是有害藻华和“死区”的驱动因素,这些现象在世界各地越来越多地发生,并可能使生态系统陷入重大且潜在的灾难性生态事件。虽然科学家们努力监测,理解和模拟过量营养素的影响,但目前的主要挑战是以合理的成本使用实时传感器频繁监测氮[N]和磷[P]动态。拥有高频率、实时的营养数据将使世界各地的基础和应用研究人员能够将营养数据与现有传感器网络和遥感的其他数据相结合,以应对有害藻华和死区的全球挑战。该研究还将整合四个研究小组之间令人兴奋的K-12外展工作。利用来自不同学科的团队专家,这些小组将共同努力创建教育模块,将知识从基础知识螺旋式上升到高级信息,以进行广泛的教育和参与。这些小组将创建为期一周的暑期课程,为高中生和大学生整合面对面和虚拟教育体验,以了解分析化学,工程和湖沼学对生产新一代水生传感器的重要性。学生们将参观并参与皇后大学、都柏林城市大学和伦斯勒大学最先进设施的研究,以及RPI在纽约州乔治湖部署的传感器网络(与IBM研究院和乔治湖协会合作)。用于测量水生生态系统中营养物质的较新技术是一次性的或需要经常更换试剂。此外,少数可现场部署的实时数据营养传感器(如磷传感器)成本很高(3万美元),这极大地限制了可部署的营养传感器的数量。水产研究人员需要实时、高频、低成本、低检测限的营养传感器,这些传感器可以嵌入现有的传感器网络中,监测其他水变量。该研究小组提出建立一个单一的传感器,使用1)聚合物分离和浓缩每种形式的氮,2)细菌将每种形式的氮转化为单一形式(即,亚硝酸盐),3)先进的3D打印微流体技术,以确保在用于现场部署的完整分析仪平台中朝向有源传感器的路线,以及4)使用新型超灵敏检测器的更灵敏的检测系统。监测复杂自然环境中水生营养物质的实时动态,有可能为这些营养物质如何影响水生生态系统带来变革性的新见解,重点关注有害藻华的全球问题。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rick Relyea其他文献
Rick Relyea的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rick Relyea', 18)}}的其他基金
OPUS: Synthesizing three decades of tadpole plasticity experiments with two decades of wetland surveys
OPUS:综合三十年的蝌蚪可塑性实验和二十年的湿地调查
- 批准号:
2243432 - 财政年份:2023
- 资助金额:
$ 62.03万 - 项目类别:
Standard Grant
Collaborative research: Disease ecology in the midst of anthropogenic stressors: Exploring the influence of pesticides on host-parasite interactions
合作研究:人为应激源中的疾病生态学:探索农药对宿主-寄生虫相互作用的影响
- 批准号:
1655168 - 财政年份:2017
- 资助金额:
$ 62.03万 - 项目类别:
Standard Grant
MRI: Acquisition of a Smart Sensor Web for understanding freshwater ecosystems
MRI:获取智能传感器网络以了解淡水生态系统
- 批准号:
1625044 - 财政年份:2016
- 资助金额:
$ 62.03万 - 项目类别:
Standard Grant
FSML: Improving infrastructure to facilitate research at the Pymatuning Lab of Ecology
FSML:改善基础设施以促进 Pymatuning 生态实验室的研究
- 批准号:
1224202 - 财政年份:2012
- 资助金额:
$ 62.03万 - 项目类别:
Standard Grant
DISSERTATION RESEARCH: Mitigating with macrophytes: How plants buffer aquatic communities from anthropogenic perturbations
论文研究:用大型植物缓解:植物如何缓冲水生群落免受人为干扰
- 批准号:
1209084 - 财政年份:2012
- 资助金额:
$ 62.03万 - 项目类别:
Standard Grant
The ecology of disease and anthropogenic stressors in amphibians
两栖动物疾病生态学和人为应激源
- 批准号:
1119430 - 财政年份:2011
- 资助金额:
$ 62.03万 - 项目类别:
Standard Grant
Phenotypic Plasticity in Amphibians: A Phylogenetic Approach
两栖动物的表型可塑性:系统发育方法
- 批准号:
0716149 - 财政年份:2007
- 资助金额:
$ 62.03万 - 项目类别:
Continuing Grant
Dissertation Research: The Relative, Long-Term Importance of Trait- and Density-Mediated Indirect Interactions in a Freshwater Snail Community
论文研究:淡水蜗牛群落中性状和密度介导的间接相互作用的相对长期重要性
- 批准号:
0508277 - 财政年份:2005
- 资助金额:
$ 62.03万 - 项目类别:
Standard Grant
Dissertation Research: Understanding the Defended Phenotype: The Importance of Predator Diet and Environmental Context on Inducible Defenses
论文研究:了解防御表型:捕食者饮食和环境背景对诱导防御的重要性
- 批准号:
0508282 - 财政年份:2005
- 资助金额:
$ 62.03万 - 项目类别:
Standard Grant
Chemical Stressor Effects on Amphibians: From Indivduals to Communities.
化学应激对两栖动物的影响:从个人到社区。
- 批准号:
0518250 - 财政年份:2005
- 资助金额:
$ 62.03万 - 项目类别:
Continuing Grant
相似国自然基金
基于关键信息(ROI-BOI)保护的高光谱图象空-谱联合压缩技术
- 批准号:60972143
- 批准年份:2009
- 资助金额:28.0 万元
- 项目类别:面上项目
SAR图像目标ROI自动获取技术研究
- 批准号:60772045
- 批准年份:2007
- 资助金额:27.0 万元
- 项目类别:面上项目
相似海外基金
Advanced Aeroponics 2: Value engineering to unlock 3x ROI in horticulture
Advanced Aeroponics 2:价值工程可实现园艺领域 3 倍的投资回报率
- 批准号:
10089184 - 财政年份:2024
- 资助金额:
$ 62.03万 - 项目类别:
Collaborative R&D
UK-RoI Cross-Border Data Protection Network (Cross-DPN)
UK-RoI 跨境数据保护网络(Cross-DPN)
- 批准号:
ES/V008080/2 - 财政年份:2022
- 资助金额:
$ 62.03万 - 项目类别:
Research Grant
UK-ROI Alcohol Research Network (AcoRN)
英国投资回报率酒精研究网络 (AcoRN)
- 批准号:
ES/V009079/1 - 财政年份:2021
- 资助金额:
$ 62.03万 - 项目类别:
Research Grant
UK-RoI Cross-Border Data Protection Network (Cross-DPN)
UK-RoI 跨境数据保护网络(Cross-DPN)
- 批准号:
ES/V008080/1 - 财政年份:2021
- 资助金额:
$ 62.03万 - 项目类别:
Research Grant
Transatlantic (US-NI-RoI) Workshop on Collaborative IoT/CPS Research Opportunities – Security and Trust Beyond Hardening
跨大西洋 (US-NI-RoI) 协作物联网/CPS 研究机会研讨会 – 超越强化的安全与信任
- 批准号:
2049960 - 财政年份:2020
- 资助金额:
$ 62.03万 - 项目类别:
Standard Grant
Rutgers Optimizes Innovation (ROI) Program
罗格斯大学优化创新 (ROI) 计划
- 批准号:
10316635 - 财政年份:2020
- 资助金额:
$ 62.03万 - 项目类别:
THIS REQUIREMENT IS TO PERFORM THE RELEASE ANALYSIS (APPEARANCE, PMR, IR, HPLC* (ASSAY; IMPURITY), MOISTURE, RESIDUAL SOLVENTS, ROI AND HEAVY METALS)
此要求是为了执行释放分析(外观、PMR、IR、HPLC*(测定;杂质)、水分、残留溶剂、ROI 和重金属)
- 批准号:
10269298 - 财政年份:2020
- 资助金额:
$ 62.03万 - 项目类别:
Rutgers Optimizes Innovation (ROI) Program
罗格斯大学优化创新 (ROI) 计划
- 批准号:
10475236 - 财政年份:2019
- 资助金额:
$ 62.03万 - 项目类别:
Rutgers Optimizes Innovation (ROI) Program
罗格斯大学优化创新 (ROI) 计划
- 批准号:
10022340 - 财政年份:2019
- 资助金额:
$ 62.03万 - 项目类别:
Rutgers Optimizes Innovation (ROI) Program
罗格斯大学优化创新 (ROI) 计划
- 批准号:
10240645 - 财政年份:2019
- 资助金额:
$ 62.03万 - 项目类别: