Advanced Optimization and Cost Estimation for Utilities and Interruptible Customers
针对公用事业和不间断客户的高级优化和成本估算
基本信息
- 批准号:9726577
- 负责人:
- 金额:$ 11.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-09-01 至 2001-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ECS-9726577 Luh Scheduling power systems and performing inter-utility power transactions are important activities to supply reliable, economic, and clean power. The economics of scheduling and transaction decisions, however, are significantly affected by uncertainties, including inaccurate forecasted demand, uncertain unit availability, and the random occurrences of bilateral power transaction opportunities. The impact of uncertainties propagates to utilities' industrial customers with interruptible load, as their prices or consumption limits may be changed forcing them to alter their resource allocation and personnel commitment. To reduce the cost of electricity through effective managing uncertainties and to provide reliable price estimates for industrial customers with interruptible load, a coalition of University of Connecticut (UConn), Northeast Utilities (NU), Taylor & Fenn, and Praxair is formed. The specific objectives of the proposed research are: 1 . To develop an effective stochastic-fuzzy optimization method for the short-term scheduling and transaction problem to minimize cost, reduce solution variance, and manage risks. 2. To further improve the above results by developing a new generation of optimization approaches based on a synergistic combination of "Lagrangian relaxation" and neural networks for better and faster resolution of larger and more complicated problems - problems covering a larger number of units, with three levels of reserve, or with a longer planning horizon. 3. To develop methods to accurately and robustly estimate the costs for providing bundled or unbundled electricity products and services, and to explore other means for a utility to better serve its industrial customers with interruptible load. The optimization of large-scale, mixed-integer uncertain systems such as the scheduling and transaction problem considered here for near-optimal cost with low variance is theoretically important and practically challenging. The foundations needed t o be laid for and the potential benefits of neural networks for such applications are intriguing and fascinating. Based on our excellent results obtained thus far, we believe that the proposed research shall not only help utilities cut costs, reduce variance, and provide better products and services for interruptible customers, but also open up a new generation of neural optimization approaches for other applications in power systems and beyond.
ECS-9726577 Luh 调度电力系统和执行电力公司间的电力交易是提供可靠、经济和清洁电力的重要活动。 然而,调度和交易决策的经济性受到不确定性的显著影响,包括不准确的预测需求,不确定的机组可用性,以及双边电力交易机会的随机发生。 不确定性的影响传播到电力公司的工业客户与可中断负荷,因为他们的价格或消费限制可能会改变迫使他们改变他们的资源分配和人员承诺。 为了通过有效管理不确定性来降低电力成本,并为具有可中断负荷的工业客户提供可靠的价格估计,康涅狄格大学(UConn),东北公用事业公司(NU),Taylor Fenn和Praxair组成了一个联盟。 拟议研究的具体目标是: 1 .针对短期作业排程与交易问题,提出一种有效的随机模糊最佳化方法,以达到成本最小化、解差异最小化及风险管理的目的。 2.为了进一步改进上述结果,开发了新一代的优化方法,其基础是“拉格朗日松弛”和神经网络的协同组合,以便更好、更快地解决更大、更复杂的问题-涉及更多单位、具有三级储备或具有更长规划期的问题。 3.制定方法,以准确和稳健地估计提供捆绑或非捆绑电力产品和服务的成本,并探索公用事业公司更好地为工业客户提供可中断负荷服务的其他方法。 大规模混合整数不确定系统的优化问题,如调度和交易问题,考虑在这里的近最优成本与低方差是理论上重要的和实际的挑战。 需要奠定的基础和神经网络对这些应用的潜在好处是有趣和迷人的。 基于我们迄今为止所取得的优秀成果,我们相信,所提出的研究不仅可以帮助电力公司降低成本,减少差异,为可中断客户提供更好的产品和服务,而且还为电力系统等领域的其他应用开辟了新一代的神经优化方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Luh其他文献
Intelligent manufacturing: New advances and challenges
- DOI:
10.1007/s10845-015-1148-z - 发表时间:
2015-09-09 - 期刊:
- 影响因子:7.400
- 作者:
Hesuan Hu;Ling Wang;Peter Luh - 通讯作者:
Peter Luh
Peter Luh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Luh', 18)}}的其他基金
Contingency-Constrained Unit Commitment with High Penetration of Intermittent Renewables
间歇性可再生能源高渗透率的应急约束机组承诺
- 批准号:
1509666 - 财政年份:2015
- 资助金额:
$ 11.65万 - 项目类别:
Standard Grant
Efficient and Robust Electricity Markets with Intermittent Renewable Generation and Smart Metering Infrastructure
间歇性可再生能源发电和智能计量基础设施的高效、稳健的电力市场
- 批准号:
1028870 - 财政年份:2010
- 资助金额:
$ 11.65万 - 项目类别:
Standard Grant
Building Emergency Evacuation: Innovative Modeling and Optimization
建筑紧急疏散:创新建模与优化
- 批准号:
1000495 - 财政年份:2010
- 资助金额:
$ 11.65万 - 项目类别:
Standard Grant
Electricity Auction: Optimization, Market Behaviors, and Comparative Studies
电力拍卖:优化、市场行为和比较研究
- 批准号:
0621936 - 财政年份:2006
- 资助金额:
$ 11.65万 - 项目类别:
Standard Grant
Achieving Quality and Coherent Configuration and Operations
实现质量和一致的配置和操作
- 批准号:
0423607 - 财政年份:2004
- 资助金额:
$ 11.65万 - 项目类别:
Standard Grant
EPNES: Robustness, Efficiency, and Security of Electric Power Grid in a Market Environment
EPNES:市场环境下电网的稳健性、效率和安全性
- 批准号:
0323685 - 财政年份:2003
- 资助金额:
$ 11.65万 - 项目类别:
Standard Grant
2003 International Workshop on IT-Enabled Supply Chain Management and Logistics; December 14-16, 2003; Bangalore, India
2003年IT支持的供应链管理和物流国际研讨会;
- 批准号:
0341205 - 财政年份:2003
- 资助金额:
$ 11.65万 - 项目类别:
Standard Grant
ESS: Scheduling, Inventory Optimization, and Coordination of Maintenance Networks
ESS:调度、库存优化和维护网络协调
- 批准号:
0223443 - 财政年份:2002
- 资助金额:
$ 11.65万 - 项目类别:
Standard Grant
A New Generation of Neural Network Optimization Techniques with Applications to Manufacturing Scheduling
新一代神经网络优化技术在制造调度中的应用
- 批准号:
9813176 - 财政年份:1998
- 资助金额:
$ 11.65万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Optimization and Validation of a Cost-effective Image-Guided Automated Extracapsular Extension Detection Framework through Interpretable Machine Learning in Head and Neck Cancer
通过可解释的机器学习在头颈癌中优化和验证具有成本效益的图像引导自动囊外扩展检测框架
- 批准号:
10648372 - 财政年份:2023
- 资助金额:
$ 11.65万 - 项目类别:
Using Multiphase Optimization Strategy (MOST) to Optimize a Cost-effective, Sustainable and Scalable Smoking Cessation Package for Smokers in HIV Clinical Care
使用多阶段优化策略 (MOST) 为 HIV 临床护理中的吸烟者优化具有成本效益、可持续且可扩展的戒烟方案
- 批准号:
10548592 - 财政年份:2022
- 资助金额:
$ 11.65万 - 项目类别:
CNS Core: Small: One Size doesn't Fit All: Workload-Aware Cost Optimization for Decentralized Applications on Blockchains
CNS 核心:小:一刀切:区块链上分散式应用程序的工作负载感知成本优化
- 批准号:
2139801 - 财政年份:2022
- 资助金额:
$ 11.65万 - 项目类别:
Standard Grant
Using Multiphase Optimization Strategy (MOST) to Optimize a Cost-effective, Sustainable and Scalable Smoking Cessation Package for Smokers in HIV Clinical Care
使用多阶段优化策略 (MOST) 为 HIV 临床护理中的吸烟者优化具有成本效益、可持续且可扩展的戒烟方案
- 批准号:
10649607 - 财政年份:2022
- 资助金额:
$ 11.65万 - 项目类别:
Constructing a Locational Marginal Emission Model Framework for Electrical Distribution Grids: Application to the Province of Alberta Grid for Dual Cost-Emissions Optimization.
构建配电网位置边际排放模型框架:应用于艾伯塔省电网的双成本排放优化。
- 批准号:
577385-2022 - 财政年份:2022
- 资助金额:
$ 11.65万 - 项目类别:
Alliance Grants
Optimization of low-dose, low cost mobile 3D X-ray Imaging
低剂量、低成本移动 3D X 射线成像的优化
- 批准号:
2791903 - 财政年份:2022
- 资助金额:
$ 11.65万 - 项目类别:
Studentship
Optimization of electronic structure in eco-friendly and low-cost CTS-system thin film solar cell
环保低成本CTS系统薄膜太阳能电池电子结构优化
- 批准号:
22K20355 - 财政年份:2022
- 资助金额:
$ 11.65万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Consensus-Based Distributed Optimization Algorithms of Low Computational Cost and Their Applications to Machine Learning
基于共识的低计算成本分布式优化算法及其在机器学习中的应用
- 批准号:
21H03510 - 财政年份:2021
- 资助金额:
$ 11.65万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Redesign, Prototyping and Cost Optimization of an Automated Drain Cleaning Machine
自动排水沟清洁机的重新设计、原型制作和成本优化
- 批准号:
561784-2021 - 财政年份:2021
- 资助金额:
$ 11.65万 - 项目类别:
Applied Research and Development Grants - Level 1
Development of optimization procedures for school closure as an infectious disease control measure by quantifying its cost-effectiveness
通过量化其成本效益,制定关闭学校作为传染病控制措施的优化程序
- 批准号:
21K17250 - 财政年份:2021
- 资助金额:
$ 11.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists