A New Generation of Neural Network Optimization Techniques with Applications to Manufacturing Scheduling

新一代神经网络优化技术在制造调度中的应用

基本信息

  • 批准号:
    9813176
  • 负责人:
  • 金额:
    $ 20.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-10-01 至 2003-01-31
  • 项目状态:
    已结题

项目摘要

9813176Luh Many exciting results on neural networks have been obtained over the past two decades, with most successful applications in the areas of pattern recognition and signal processing. Developing neural networks for mathematical optimization has been a new thrust, holding much promise for overcoming the difficulties in solving large combinatorial optimization problems. This research is to further advance neural networks for the very common but notoriously difficult "NP hard" combinatorial optimization problems. The focus will be on integer optimization problems with specialized "separable" structure, since they encompass a wide range of scheduling and other important applications, and often lead to efficient methods with orders of magnitude performance improvement. The first task is to lay a solid foundation for neural optimization by exploring theoretical issues such as stability and convergence properties using recent algorithm convergence results. The second task explores effective ways to solve manufacturing scheduling problems by developing "neural dynamic programming" for solving subproblems. This novel neural dynamic programming transcends the majority of computational difficulties associated with solving subproblems such as infeasibility, local minima, and slow convergence of subproblem solutions, and in addition is amenable to efficient hardware implementation. The third task seeks hardware implementation of the approach to achieve very high solution quality and computation speed. The successful development of neural networks for separable integer optimization will result in a new generation of methods to obtain near-optimal solutions with quantifiable quality in a computationally efficient manner. The effective resolution of realistic scheduling problems will also have practical impact on the bottom line of our industrial partners and beyond. The hardware implementation then has a strong potential to achieve very high solution quality and computation speed for a wide range of business and engineering applications. The vision is to have a VLSI "digital optimizer" chip to be plugged into PCs to help solve a wide range of business and engineering optimization problems.
小行星9813176 在过去的二十年里,神经网络已经取得了许多令人兴奋的成果,其中最成功的应用领域是模式识别和信号处理。 发展神经网络用于数学优化已经成为一个新的推动力,为克服解决大型组合优化问题的困难提供了很大的希望。 这项研究是为了进一步推进神经网络用于非常常见但非常困难的“NP难”组合优化问题。 重点将是专门的“可分离”结构的整数优化问题,因为它们包含了广泛的调度和其他重要的应用程序,并往往导致有效的方法与数量级的性能改善。 第一个任务是通过使用最近的算法收敛结果探索稳定性和收敛特性等理论问题,为神经优化奠定坚实的基础。第二个任务探索有效的方法来解决制造调度问题,通过发展“神经动态规划”解决子问题。 这种新颖的神经动态规划超越了大多数与解决子问题相关的计算困难,如不可行性,局部极小值和子问题解决方案的收敛速度慢,此外还适合于高效的硬件实现。 第三个任务寻求硬件实现的方法,以实现非常高的解决方案的质量和计算速度。 可分离整数优化神经网络的成功开发将导致新一代方法以计算高效的方式获得具有可量化质量的接近最优的解决方案。 实际调度问题的有效解决也将对我们的工业合作伙伴及其他方面的底线产生实际影响。 然后,硬件实现具有很强的潜力,以实现非常高的解决方案质量和计算速度,为广泛的业务和工程应用。 该公司的愿景是将一个超大规模集成电路(VLSI)“数字优化器”芯片插入个人电脑,以帮助解决广泛的商业和工程优化问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Luh其他文献

Intelligent manufacturing: New advances and challenges
  • DOI:
    10.1007/s10845-015-1148-z
  • 发表时间:
    2015-09-09
  • 期刊:
  • 影响因子:
    7.400
  • 作者:
    Hesuan Hu;Ling Wang;Peter Luh
  • 通讯作者:
    Peter Luh

Peter Luh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Luh', 18)}}的其他基金

Contingency-Constrained Unit Commitment with High Penetration of Intermittent Renewables
间歇性可再生能源高渗透率的应急约束机组承诺
  • 批准号:
    1509666
  • 财政年份:
    2015
  • 资助金额:
    $ 20.74万
  • 项目类别:
    Standard Grant
Evacuating with Others Virtually
与他人虚拟避难
  • 批准号:
    1463520
  • 财政年份:
    2015
  • 资助金额:
    $ 20.74万
  • 项目类别:
    Standard Grant
Efficient and Robust Electricity Markets with Intermittent Renewable Generation and Smart Metering Infrastructure
间歇性可再生能源发电和智能计量基础设施的高效、稳健的电力市场
  • 批准号:
    1028870
  • 财政年份:
    2010
  • 资助金额:
    $ 20.74万
  • 项目类别:
    Standard Grant
Building Emergency Evacuation: Innovative Modeling and Optimization
建筑紧急疏散:创新建模与优化
  • 批准号:
    1000495
  • 财政年份:
    2010
  • 资助金额:
    $ 20.74万
  • 项目类别:
    Standard Grant
Electricity Auction: Optimization, Market Behaviors, and Comparative Studies
电力拍卖:优化、市场行为和比较研究
  • 批准号:
    0621936
  • 财政年份:
    2006
  • 资助金额:
    $ 20.74万
  • 项目类别:
    Standard Grant
Achieving Quality and Coherent Configuration and Operations
实现质量和一致的配置和操作
  • 批准号:
    0423607
  • 财政年份:
    2004
  • 资助金额:
    $ 20.74万
  • 项目类别:
    Standard Grant
EPNES: Robustness, Efficiency, and Security of Electric Power Grid in a Market Environment
EPNES:市场环境下电网的稳健性、效率和安全性
  • 批准号:
    0323685
  • 财政年份:
    2003
  • 资助金额:
    $ 20.74万
  • 项目类别:
    Standard Grant
2003 International Workshop on IT-Enabled Supply Chain Management and Logistics; December 14-16, 2003; Bangalore, India
2003年IT支持的供应链管理和物流国际研讨会;
  • 批准号:
    0341205
  • 财政年份:
    2003
  • 资助金额:
    $ 20.74万
  • 项目类别:
    Standard Grant
ESS: Scheduling, Inventory Optimization, and Coordination of Maintenance Networks
ESS:调度、库存优化和维护网络协调
  • 批准号:
    0223443
  • 财政年份:
    2002
  • 资助金额:
    $ 20.74万
  • 项目类别:
    Standard Grant
Advanced Optimization and Cost Estimation for Utilities and Interruptible Customers
针对公用事业和不间断客户的高级优化和成本估算
  • 批准号:
    9726577
  • 财政年份:
    1998
  • 资助金额:
    $ 20.74万
  • 项目类别:
    Standard Grant

相似国自然基金

Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:

相似海外基金

The next generation of functional neuroimaging to elucidate neural underpinnings of driving behaviour
下一代功能神经影像学可阐明驾驶行为的神经基础
  • 批准号:
    2881145
  • 财政年份:
    2023
  • 资助金额:
    $ 20.74万
  • 项目类别:
    Studentship
CRCNS Research Proposal: A Unified Framework for Unsupervised Sparse-to-dense Brain Image Generation and Neural Circuit Reconstruction
CRCNS 研究提案:无监督稀疏到密集脑图像生成和神经回路重建的统一框架
  • 批准号:
    2309073
  • 财政年份:
    2023
  • 资助金额:
    $ 20.74万
  • 项目类别:
    Continuing Grant
Neural control of speech generation in human motor cortex
人类运动皮层语音生成的神经控制
  • 批准号:
    10722067
  • 财政年份:
    2023
  • 资助金额:
    $ 20.74万
  • 项目类别:
next-generation sequencing approaches to identify genotype-phenotype relationships during miRNA tuning of neural crest osteogenesis
新一代测序方法可识别神经嵴成骨过程中 miRNA 调节过程中的基因型与表型关系
  • 批准号:
    10579800
  • 财政年份:
    2023
  • 资助金额:
    $ 20.74万
  • 项目类别:
Realization of Graph Neural SLAM, a next-generation SLAM technology based on knowledge-intensive maps
基于知识密集型地图的下一代SLAM技术Graph Neural SLAM的实现
  • 批准号:
    23K11270
  • 财政年份:
    2023
  • 资助金额:
    $ 20.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a next-generation differentiation protocol for dopaminergic neural progenitors from human pluripotent stem cells
开发人类多能干细胞多巴胺能神经祖细胞的下一代分化方案
  • 批准号:
    23K08578
  • 财政年份:
    2023
  • 资助金额:
    $ 20.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding and Improving Search-Based Algorithms for Neural Sequence Generation
理解和改进基于搜索的神经序列生成算法
  • 批准号:
    RGPIN-2022-04154
  • 财政年份:
    2022
  • 资助金额:
    $ 20.74万
  • 项目类别:
    Discovery Grants Program - Individual
Unsupervised Neural Text Generation by Stochastic Searching
通过随机搜索生成无监督神经文本
  • 批准号:
    RGPIN-2020-04465
  • 财政年份:
    2022
  • 资助金额:
    $ 20.74万
  • 项目类别:
    Discovery Grants Program - Individual
Integrated Circuits for Next-Generation Neural Implants
用于下一代神经植入物的集成电路
  • 批准号:
    DGECR-2022-00107
  • 财政年份:
    2022
  • 资助金额:
    $ 20.74万
  • 项目类别:
    Discovery Launch Supplement
Next Generation Virtual Musical Instruments: Physics-informed Neural Networks for Sound Synthesis and Digital Audio Effects
下一代虚拟乐器:用于声音合成和数字音频效果的物理信息神经网络
  • 批准号:
    2710512
  • 财政年份:
    2022
  • 资助金额:
    $ 20.74万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了